
Exam Functional Programming

Tuesday, May 23, 2006, 14.00–17.00

EDUC-gamma

The exam consists of four multiple-choice questions (1 point each) and three
open questions (2 points each). At the multiple-choice questions, only one
choice corresponds to the correct answer. Not answering a multiple-choice
question earns you 1

4 point. Hand in the solution sheets (pages i–iv), with
choices circled and open questions answered; fill in your name and student
number in the appropriate boxes.

Problems

1. PROBLEM [1 PT]: Which of the following is a correct type for concat ◦ concat?

a. [[a]]→ [[a]]→ [[a]]

b. [[a]]→ [[a]]→ [a]

c. [[[a]]]→ [a]

d. [a]→ [[a]]→ [a]

2. PROBLEM [1 PT]: Which of the following functions counts the number of sub-
sets of a given set of non-negative integers that sum up to a specific value?
You may assume that the list argument is indeed a set—i.e., that each value ap-
pears at most once as an element of the list—and that all elements are indeed
non-negative.

a. count [] 0 = 1
count [] = 0
count (x : xs) v = count xs (v− x)

b. count [] 0 = 1
count xs v | v < 0 = 0

| xs ≡ [] = 0
| otherwise = count (tail xs) (v− head xs) + count (tail xs) v

c. count 0 = 1
count xs v = if v 6 0 then 0 else sum [r | x← xs, r← count xs (v− x)]

d. count xs v = sum ◦map (const 1) ◦ filter (v ≡) $ segs xs

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

3. PROBLEM [1 PT]: Which of the following expressions is equivalent to the list
comprehension [x + y | x← [1 . . 10], even x, y← [1 . . 10]]?

a. map (+) ◦ filter (even ◦ fst) $ [(x, y) | x← [1 . . 10], y← [1 . . 10]]

b. concat ◦map ((flip map [1 . . 10]) ◦ (+)) ◦ filter even $ [1 . . 10]

c. map (λx→ map (x+) [1 . . 10]) ◦ concat ◦ filter even $ [1 . . 10]

d. concat (zipWith (+) [2, 4 . . 10] [1 . . 10])

Note: flip f x y = f y x.

4. PROBLEM [1 PT]: Which of the following claims holds?

a. The function return is idempotent—i.e., in all contexts, return (return x) can
safely be replaced by return x;

b. there exist expressions of type IO (IO Int);

c. if you define an instance of the class Eq, you have to at least specify the
operator (≡);

d. the class Enum has a fixed number of instances.

5. PROBLEM [2 PTS]: One of the disadvantages of the search trees as discussed
in the lectures is that they are a bit wasteful. For instance, a singleton value
v is represented by Node Leaf v Leaf . A more efficient data type encodes the
emptyness of left and right subtrees in a constructor. For example:

data Tree a = Leaf
| LVR (Tree a) a (Tree a) -- like Node l v r
| LV (Tree a) a -- representing Node l v Leaf
| VR a (Tree a) -- representing Node Leaf v r
| V a -- representing Node Leaf v Leaf .

Define the functions for insertion and deletion for this type of search trees.
Hint: use “smart constructors”:

node Leaf a Leaf = V a
node Leaf a r = VR a r

-- etc.

6. PROBLEM [2 PTS]: Consider the data type Prop,

data Prop = And Prop Prop
| Or Prop Prop
| Implies Prop Prop
| Cnst Bool
| Var String.

(1) Give the type signature and definition of the corresponding fold function,
foldProp.

2

2

(2) Use the function foldProp to define a function evalProp :: Prop→ Env→ Bool
which computes the value of a given proposition in an environment of type
Env,

type Env = String→ Bool.

If you had no clue at part (1), then define evalProp directly.

7. PROBLEM [2 PTS]: Prove by induction on lists that foldr f e (reverse xs) =
foldl (flip f) e xs. You may use the lemma foldr f e (as ++ [b]) = foldr f (f b e) as.

3

2

