
Functional Programming – Final exam – Thursday 8/11/2018

Name:

Student number:

Q: 1 2 3 4 5 6 7 Total

P: 14 16 16 27 12 15 5 100

S:
Before you begin:

• Do not forget to write down your name and student number above.

• If necessary, explain your answers in English.

• Use only the empty boxes under the questions to write your answer and explanations in.

• The exam consists of five (5) questions in seven (7) pages.

• At the end of the exam, only hand in the filled-in exam paper. Use the blank paper provided with this
exam only as scratch paper (kladpapier).

• Answers will not only be judged for correctness, but also for clarity and conciseness.

In any of the answers below you may (but do not have to) use the following well-known Haskell functions
and operators, unless stated otherwise: id, (.), const, flip, head, tail, (++), concat, foldr (and its
variants), map, filter, sum, all, any, elem, not, (&&), (||), zip, reverse, and all the members of the type
classes Show, Eq, Ord, Enum, Num, Functor, Applicative, and Monad.

1. We have often spoken of a tuple (a, t) as having two components of types a and t. Another way to
look at them is as a value of type t annotated with some information of type a.

(a) (4 points) Write the following two functions:
annotateMaybe :: (t -> a) -> Maybe t -> Maybe (a, t)

annotateList :: (t -> a) -> [t] -> [(a, t)]

which annotate an optional value, or every element of a list of values, respectively, with the result
of applying the function given as first argument.

(b) (5 points) This function can be generalized to work over any Functor. Write the implementation
of the following function:
annotate :: Functor f => (t -> a) -> f t -> f (a, t)

(c) (5 points) Given an annotated data structure, we may split it in two parts: the first one contains
only the annotations, and the second one the actual values.
split :: Functor f => f (a, t) -> (f a, f t)

split x = (fmap (\(a,_) -> a) x, fmap (\(_,t) -> t) x)

Now consider the following function, which splits a list [(a, t)] of annotated elements and puts
back together another list of the same type using the corresponding Monad instance.
weird lst = do let (anns, vals) = split lst

ann <- anns

val <- vals

return (ann, val)

Would this function, in general, give back the same list that was given as argument? Explain your
answer, or give a counterexample if this is not the case.

2. The Monoid type class represents types along with a binary operation (<>) which is associative and has
a neutral element mempty:

class Monoid m where

mempty :: m

(<>) :: m -> m -> m

If we have a container whose elements come from a monoidal type, we can “crush” all of them into a
single value. This leads to the definition of the Crushable type class, for which an instance for [] can
be defined:

class Functor f => Crushable f where

crush :: Monoid m => f m -> m

instance Crushable [] where

crush [] = mempty

crush (m:ms) = m <> crush ms

For example, crush ["haskell", " is ", "fun!"] returns "haskell is fun!".

Page 2

(a) (8 points) Write the Crushable instance for the Maybe type constructor, and for the following ver-
sion of binary trees:
data Tree a = Leaf a | Node (Tree a) a (Tree a)

(b) (3 points) In order to distinguish between the different monoidal structures that we can give to
numbers, we wrap them into a new data type. Here is the definition of Sum, whose Monoid instance
uses the addition operation from the underlying numeric type:
data Sum a = Sum { unSum :: a }

instance Num a => Monoid (Sum a) where

mempty = Sum 0

Sum x <> Sum y = Sum (x + y)

Using crush and Sum, define a generalized version of the length function for any crushable functor.
Remember that any Crushable is also a Functor.
glength :: Crushable f => f a -> Integer

(c) (5 points) A tropical monoid results from taking a type which can be ordered, and then defining
the monoidal operation as taking the minimum between two values. In order to define a neutral
element, we need to attach an additional value representing ∞, that is, min(x, ∞) = min(∞, x) = x.
data Tropical a = Value a | Infinite

Complete the following definition of the Monoid instance for Tropical a:
instance Ord a => Monoid (Tropical a) where ...

Page 3

3. EQUATIONAL REASONING AND INDUCTION

(a) (6 points) Given the following definitions for some well-known functions:
(a) sum [] = 0

(b) sum (x:xs) = x + sum x

(c) concat [] = []

(d) concat (x:xs) = x ++ concat xs

(e) map _ [] = []

(f) map f (x:xs) = f x : map f xs

(g) (f . g) x = f (g x)

Prove by induction that the following holds:
length . concat = sum . map length

In the proof you may assume that the following lemma is true:
length (x ++ y) = length x + length y

(b) (10 points) Given the following definitions:
(a) filter _ [] = []

(b) filter p (x:xs)

(b1) | p x = x : filter p xs

(b2) | otherwise = filter p xs

Page 4

(c) mapMaybe _ [] = []

(d) mapMaybe f (x:xs) = case f x of

(d1) Just y -> y : mapMaybe f xs

(d2) Nothing -> mapMaybe f xs

Prove that the following holds for any predicate p :: a -> Bool and list xs :: [a],
filter p xs = mapMaybe (\x -> if p x then Just x else Nothing) xs

Use induction. State and prove here the [] case.

State the induction hypothesis and prove here the (z:zs) case. You need to distinguish two cases,
depending on whether the predicate p holds for the element z or not.

Page 5

4. Consider the following data type of arithmetic expressions in which the type of variables v may be
chosen by the programmers:

data ArithExpr v = Variable v

| Literal Integer

| Add (ArithExpr v) (ArithExpr v)

| Times (ArithExpr v) (ArithExpr v)

An evaluator for this data type describes how to obtain a final Integer value given the value of each
variable. Here we assume that every variable has a defined value, and thus we can represent the map-
ping as a function:

eval :: (v -> Integer) -> ArithExpr v -> Integer

eval m (Variable v) = m v

eval _ (Literal n) = n

eval m (Add e1 e2) = eval m e1 + eval m e2

eval m (Times e1 e2) = eval m e1 * eval m e2

(a) (8 points) Write a monadic evaluator for ArithExpr, that is, complete the definition of the fol-
lowing evalM function. The difference with eval above is that the variable handling works in a
monadic context.
evalM :: Monad m => (v -> m Integer) -> ArithExpr v -> m Integer

(b) (5 points) During the lectures we have worked with partial mappings, that is, mappings which are
not defined for all possible inputs. We describes such mappings via a list of tuples [(v, Integer)].
Using the functions evalM defined above, and the function lookup :: a -> [(a, b)] -> Maybe b,
write the following evaluator which fails if one of the variables is not present:
eval’ :: Eq v => [(v, Integer)] -> ArithExpr v -> Maybe Integer

Page 6

(c) (10 points) In addition to the possibility of failing, we want to keep track of which variables are
used during the evaluation of an arithmetic expression. In order to do so, we define the following
data type:
data TrackAndFail v a = TF (Maybe a, Set v)

A value of type Set v represents a set of values of type v. Sets form a monoid: they can be com-
bined using the (<>) operation, and the empty set is represented by mempty.
Write the Monad instance for TrackAndFail v. First give the definition for return:
-- in general, return :: a -> m a

return x = ...

Now write the definition of the bind operation, (>>=). You may introduce additional pattern
matching in the definition:
-- in general, (>>=) :: m a -> (a -> m b) -> m b

x >>= f = ...

(d) (4 points) Write a QuickCheck property that states that evaluating a literal with verb’ always
returns the value in that literal.

5. (12 points) Consider the following piece of code, where g :: Int -> Maybe Int and h :: a -> Maybe a.

f w = do x <- g w

let xs = do z <- [1, 2]

v <- [’a’, ’b’]

return (z, v)

y <- h (snd (head xs))

return y

Page 7

Complete the following sentence by filling in the gaps:

In the Maybe monad, (1) signals failure and (2) a successful computation. In the above
program, the type of w is (3) , the type of x is (4) and the type of xs is (5) . If we run f

and print the value of xs to the screen we would see (6) .

(1)

(2)

(3)

(4)

(5)

(6)

6. LAZINESS AND EVALUATION

(a) (8 points) For each of the following expressions, indicate whether they are in weak head normal form
(WHNF), and explain why. If they are not, write the corresponding value in WHNF.

• Just (4 + 4)

• map (+1) []

• (\x -> 0) 0

• [1 ..]

(b) (4 points) Consider the following two variations of the take function:
take1 _ [] = []

take1 0 _ = []

take1 n (x:xs) = x : take1 (n-1) xs

take2 0 [] = []

take2 0 (x:xs) = []

take2 n [] = []

take2 n (x:xs) = x : take2 (n-1) xs

Page 8

Give an example of call to take2 which results in undefined, which would return an actual value
using take1. What does this tells about the strictness of each argument position?

(c) (3 points) Write the function take2 using take1 and seq.

7. In the lecture about Formal Verification in Agda, the following data type was introduced:

data Vec (A : Set) : N → Set where

[] : Vec A Z

:: : ∀{n} → A → Vec A n → Vec A (S n)

(a) (3 points) What does this data type represent?

(b) (2 points) How would you use this data type to define a version of the head function which never
fails?

Page 9

