
EXAM FUNCTIONAL PROGRAMMING
Tuesday the 29th of September 2015, 11.00 h. - 13.00 h.

Name:
Student number:

Before you begin: Do not forget to write down your name and student number above. If necessary,
explain your answers (in English or Dutch). For multiple choice questions, clearly circle what you think
is the (one and only) best answer. Use the empty boxes under the other questions to write your answer
and explanations in. Use the blank paper provided with this exam only as scratch paper (kladpapier).
At the end of the exam, only hand in the filled-in exam paper. Answers will not only be judged for
correctness, but also for clarity and conciseness. A total of one hundred points can be obtained; divide
by 10 to obtain your grade. Good luck!

In any of your answers below you may (but do not have to) use the following well-known Haskell
functions/operators: replicate, id , concat , foldr (and variants), map, filter , const , all , any , flip, fst , snd ,
not , (.), elem, take, drop, takeWhile, dropWhile, head , tail , (++), lookup, max , min and all members
of the type classes Eq , Num, Ord , Show and Read .

1. (i) Write a function allNats :: [Int ] −> Bool that returns True if and only if all values in the
input list are larger than zero. You are not allowed to use explicit recursion.

. . . /6

allNats xs = all (>0) xs
but also

allNats xs = minimum xs > 0
If foldr is used instead, you get

allNats ′ xs = foldr (\ x y −> (x > 0) && y) xs

(ii) Using explicit recursion (no higher-order functions!) implement the function pairUp that
pairs subsequent elements of a list: pairUp [1, 2, 3, 4] returns [(1, 2), (3, 4)]. If the list has an
odd number of elements, the final element of the list should be ignored. So pairUp [1, 2, 3, 4, 5]
is also [(1, 2), (3, 4)].

. . . /8

pairUp :: [a ] −> [(a, a)]
pairUp [ ] = [ ]
pairUp [x ] = [ ]
pairUp (x1 : x2 : xs) = (x1 , x2 ) : pairUp xs
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(iii) The function rldecode performs run length decoding. For the input [1, 2, 3, 4] we expect it
to generate the list [2,4,4,4]: the first number tells us how many of the second end up in the
output, the third number says how many of the fourth we want, and so on. If the input list
contains negative numbers or zero, then the empty list should be returned.

We implement this function using the functions allNats and pairUp as follows:

rldecode :: [Int ] −> [Int ]
rldecode xs =

if allNats xs then
foldr f e arg

else
[ ]

where f ...
e ...
arg ...

Given suitable definitions for f , e and arg .

. . . /8

f (x , y) xs = replicate x y ++ xs
-- or (++) . (\ (x , y) −> replicate x y) for example

e = [ ]
arg = pairUp xs

A completely different solution that I had not thought of, but does get all points is something
like:

f = (++)
e = [ ]
arg = map g (pairUp xs)

where g (x , y) = replicate x y

(iv) Give the type of the function flip that when given an arbitrary binary function f , returns
the function that takes the arguments for f in reverse order.

. . . /5

flip :: (a −> b −> c) −> (b −> a −> c)
or

flip :: (a −> b −> c) −> b −> a −> c
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2. (i) Define a datatype CountTree a with the following properties:

a. the leaves of the tree do not contain any information

b. in the branches, the tree splits in two

c. in every branch there is a piece of information of (the same) type a, and

d. in every branch there is an additional value of type integer

. . . /7

data CountTree a = Leaf
| Branch (CountTree a) a Int (CountTree a)

Quite a few people had something like
Leaf | (a, Int) :> (CountTree a,CountTree a)

which is also allowed, but :> must have exactly two arguments (hence the added tuples).
[CountTree a ] is a bit too roomy instead of (CountTree a,CountTree a).

(ii) Write a function

height :: CountTree a −> Int

that computes how high the tree is. The height of a Leaf is zero, the height of a non-leaf is
one more than the maximum height of the subtrees.

. . . /7

height :: CountTree a −> Int
height Leaf = 0
height (Branch ct1 ct2 ) = 1 + max (height ct1 ) (height ct2 )

(iii) Write a function

insert :: Float −> CountTree Float −> CountTree Float

that adds an element to a count tree, even if it is already present.

The function may assume the tree has the following properties, but must also ensure that the
tree that it returns has those same properties: (A) the values in the branches are in order,
meaning that the value in a node is larger then or equal to the values in the left subtree, and
smaller than all the values in the right subtree. (B) the additional integer values indicate
how many values are contained in the LEFT subtree of each node.

. . . /8

insert :: Float −> CountTree Float −> CountTree Float
insert flt Leaf = Branch Leaf flt 0 Leaf
insert flt (Branch ct1 val cnt ct2 ) =
if flt <= val then Branch (insert flt ct1 ) val (cnt + 1) ct2
else Branch ct1 val cnt (insert flt ct2 )
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(iv) Write a function insertU that behaves almost the same as insert but that only insert the
float argument if it does not yet occur in the tree. In your implementation, you may
visit every branch at most once. Hint: implement a helper function insertHelp :: .... −>
(CountTree Float ,Bool) that returns not only the modified tree, but some additional infor-
mation as well.

. . . /6 One possible solution is:

insertU :: Float −> CountTree Float −> CountTree Float
insertU flt ct = fst (insertHelper ct)
where

insertHelper :: CountTree Float −> (CountTree Float ,Bool)
insertHelper Leaf = (Branch Leaf flt 0 Leaf ,True)
insertHelper t @@ (Branch ct1 val cnt ct2 ) =

if flt == val then (t ,False) -- do not insert. value’s there
else
if flt < val then -- go left
let (ctl , grown) = insertHelper ct1
in (if grown then Branch ctl val (cnt + 1) ct2

else Branch ctl val cnt ct2 , grown)
else -- go right
let (ctr , grown) = insertHelper ct2
in (Branch ct1 val cnt ctr , grown)

3. (i) A very efficient definition of segs for all segments of a list is

segs xs = [ ] : [t | i <− inits xs, t <− tails i ,not (null t)]

What is segs [1, 2, 3, 4]?

. . . /4 [[ ], [1], [1, 2], [2], [1, 2, 3], [2, 3], [3], [1, 2, 3, 4], [2, 3, 4], [3, 4], [4]] (order does not

matter)

(ii) Explain in your own words how this function computes what it is supposed to compute. If
necessary illustrate by a small example.

. . . /6 The code conceptually consists of a nested loop: first the inits are computed that

represent all ways of cutting a piece off at the end, then tails is used to do the same on the
other side. This leads to many duplicate nulls (for t), so we remove those, and add one []
afterwards.
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4. . . . /20 c, b, c, c

The following multiple choice questions are each worth 5 points.

(i) Let f be any function of type Int −> Bool . Which expression has the same value as the
following list comprehension?

[f x | x <− [2 . . 8], odd x ]

a. filter odd (map f [2 . . 8])

b. f (map odd [2 . . 8])

c. map f (filter odd [2 . . 8])

d. filter f (map odd [2 . . 8])

(ii) I [id , const 2] is well-typed

II \ x −> [even x ,fib x ], where fib is the well-known Fibonacci function, is well-typed

a. Both I and II are true

b. Only I is true

c. Only II is true

d. Both I and II are false

(iii) Given that until :: (a −> Bool) −> (a −> a) −> a −> a what is the type of foldr until?

a. (b −> Bool) −> b −> [b −> b ] −> b

b. [a −> a ] −> [a −> Bool ] −> [a ]

c. (a −> a) −> [a −> Bool ] −> a −> a

d. The expression is type incorrect.

(iv) I In an expression with only associative operators you can omit all parentheses.

II That the operator (++) is defined as right-associative helps increase computational ef-
ficiency.

a. Both I and II are true

b. Only I is true

c. Only II is true

d. Both I and II are false
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5. Determine the type of until even. You should not just write down the type below, but also explain
how you arrived at that type (for example, in the way that this is done in the lecture notes of this
course).

. . . /15 See p. 121, sec. 5.5 in the reader.
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