INFOB3TC - Solutions for Exam 2

Johan Jeuring

Wednesday, 1 February 2017, 11:00-13:00

Please keep in mind that there are often many possible solutions and that these example solutions may contain mistakes.

Multiple-choice questions

In this series of 10 multiple-choice question, you get:

- 5 points for each correct answer,
- 1 point if you do not answer the question,
- and 0 points for a wrong answer.

Answer these questions with one of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, or d .

1 (5 points). Consider the following regular language:
$L=\left\{x \mid x \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$, length x is even, bb is a substring of $\left.x\right\}$
Which of the following automata, with start state S, generates L ?
a)

b)

c)

d)

Solution 1. d). a), b) and c) cannot produce abba.

2 (5 points). Consider the following nondeterministic finite state automaton with starting state S.

Which of the following regular expressions generates the same language as this automaton?
a) $a(a a+b c a) * b c d$.
b) $\mathrm{a}((\mathrm{aa}) *+(\mathrm{bca}) *) \mathrm{bcd}$.
c) $\mathrm{a} a *(\mathrm{bca}) * \mathrm{bcd}$.
d) $\mathrm{a}(\mathrm{aa}) *(\mathrm{bca}) * \mathrm{bcd}$.

Solution 2. a).

3 (5 points). Consider the regular language
$\left\{x \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid\right.$ the number of a 's plus the number of b 's is even $\}$
Which of the following regular expressions does not describe this language?
a) $\left(c^{*}(a+b) c^{*}(a+b) c^{*}\right)^{*}+c^{*}$.
b) $c^{*}\left((a+b) c^{*}(a+b)\right)^{*} c^{*}$.
c) $\left(c^{*}(a+b) c^{*}(a+b)\right)^{*} c^{*}$.
d) $c^{*}\left((a+b) c^{*}(a+b) c^{*}\right)^{*}$.

Solution 3. b).

4 (5 points). Consider the following two languages on the terminal symbols x and y :

$$
\begin{aligned}
& L_{1}=\left\{\mathrm{x}^{i} \mathrm{y}^{j} \mid j \geqslant i \geqslant 10\right\} \\
& L_{2}=\left\{\mathrm{x}^{i} \mathrm{y}^{j} \mid 10 \geqslant i \geqslant j\right\}
\end{aligned}
$$

a) Only L_{2} is regular.
b) Only L_{1} is regular.
c) None of L_{1} and L_{2} are regular.
d) L_{1} and L_{2} are both regular.

Solution 4. a).
5 (5 points). I want to show that the language L :

$$
\left\{x \mid x \in\{\mathrm{a}, \mathrm{~b}\}^{*}, n r \text { a } x<n r \mathrm{~b} x\right\}
$$

where $n r c y$ is the number of occurrences of c in y, is not regular. Then I have to show that for all natural numbers n there exist x, y, z such that $x y z \in L$ en $|y| \geqslant n$, such that \ldots. Which of the following choices for x, y, z ensure that I can easily complete the proof?
a) $z=\epsilon, y=\mathrm{a}^{n} \mathrm{~b}^{n}, x=\mathrm{b}^{n}$.
b) $x=\epsilon, y=\mathrm{b}^{2 n}, z=\mathrm{a}^{n}$.
c) $x=\mathrm{a}^{n}, y=\mathrm{b}^{n}, z=\mathrm{b}^{n}$.
d) $x=\mathrm{b}^{2 n}, y=\mathrm{a}^{n}, z=\epsilon$.

Solution 5. d).

6 (5 points). Consider the following two languages:

$$
\begin{aligned}
& L_{1}=\left\{0^{n} 1^{m} 0^{n} 1^{m} \mid n, m>0\right\} \\
& L_{2}=\left\{0^{n} 1^{m} 0^{m} 1^{n} \mid n, m>0\right\}
\end{aligned}
$$

Are L_{1} and L_{2} context-free?
a) Both L_{1} and L_{2} are context-free.
b) None of L_{1} and L_{2} are context-free.
c) Only L_{1} is context-free.
d) Only L_{2} is context-free.

Solution 6. d)
7 (5 points). For which nonterminals N of the following grammar

$$
\begin{aligned}
S & \rightarrow A \mathrm{aC} \mid B \mathrm{~d} \\
A & \rightarrow B C \\
B & \rightarrow \mathrm{~b} B \mid C \\
C & \rightarrow \mathrm{acc} S \mid[]
\end{aligned}
$$

does first N contain the terminal b ?
a) $\{B\}$.
b) $\{A, B, S\}$.
c) $\{B, C\}$.
d) $\{A, B\}$.

Solution 7. b).

8 (5 points). For which nonterminals N of the following grammar

$$
\begin{aligned}
S & \rightarrow A \mathrm{aC} \mid B \mathrm{~d} \\
A & \rightarrow B C \\
B & \rightarrow \mathrm{~b} B \mid C \\
C & \rightarrow \mathrm{acc} S \mid \epsilon
\end{aligned}
$$

is d element of the follow N set?
a) $\{B\}$.
b) $\{S, A, B, C\}$.
c) $\{B, C\}$.
d) $\{S, B, C\}$.

Solution 8. d).

9 (5 points). Consider the following two grammars:
I

$$
\begin{aligned}
W & \rightarrow \mathrm{c} \mid \mathrm{b} \\
S & \rightarrow T \mathrm{a} \mid V T \mathrm{a} \\
T & \rightarrow S T|W| \mathrm{a} \\
V & \rightarrow \mathrm{~b}
\end{aligned}
$$

II

$$
\begin{aligned}
S & \rightarrow B C \mathrm{~d} \mid \epsilon \\
A & \rightarrow A \mathrm{aSb}|\mathrm{SbC}| \epsilon \\
B & \rightarrow \mathrm{~b} \mid \epsilon \\
C & \rightarrow \mathrm{c} \mid B
\end{aligned}
$$

Are these grammars LL(1)?
a) None of the two grammars is $\operatorname{LL}(1)$.
b) Both grammar I and grammar II are LL(1).
c) Only grammar I is LL(1).
d) Only grammar II is LL(1).

Solution 9. a).

10 (5 points). Construct the $\operatorname{LR}(0)$ automaton for the following grammar.

$$
\begin{aligned}
S^{\prime} & \rightarrow S \$ \\
S & \rightarrow X \mathrm{x} \mid Y_{\mathrm{y}} \\
X & \rightarrow \mathrm{x} \\
Y & \rightarrow \mathrm{y}
\end{aligned}
$$

Which of the following statements is true?
a) The automaton has no conflicts.
b) The automaton has both a shift/reduce and a reduce/reduce conflict.
c) The automaton contains a shift/reduce conflict.
d) The automaton contains a reduce/reduce conflict.

Solution 10. a).

$\mathbf{1 1}$ (5 points). The different LR classes categorize grammars: $\operatorname{LR}(0) \subset \operatorname{SLR}(1) \subset \operatorname{LALR}(1)$ $\subset \operatorname{LR}(1)$. What is the smallest set of which the following grammar is a member?

$$
\begin{aligned}
S & \rightarrow E \$ \\
E & \rightarrow A \mathrm{a} B \mid B \\
A & \rightarrow \mathrm{~b} B \mid \mathrm{c} \\
B & \rightarrow A
\end{aligned}
$$

a) $\operatorname{LR}(1)$
b) $\operatorname{LALR}(1)$
c) $\operatorname{SLR}(1)$
d) $\operatorname{LR}(0)$

Solution 11. b).

Open answer questions

12 (15 points). Consider the language $P_{a b}$ given by the following context-free grammar with start symbol P :

$$
P \rightarrow \mathrm{a} P \mathrm{a}|\mathrm{~b} P \mathrm{~b}| \mathrm{a}|\mathrm{~b}| \epsilon
$$

Prove that the language $P_{a b}$ is not regular, using the pumping lemma for regular languages.

Solution 12. The language $P_{a b}$ is not regular. To prove it, we assume it is regular and find a contradiction using the pumping lemma.

For any n,
let $x=\varepsilon, y=\mathrm{a}^{n}, z=\mathrm{ba}^{n}$. Then $x y z=\mathrm{a}^{n} \mathrm{ba}^{n} \in L(P)$, and $|y| \geqslant n$.
From the pumping lemma, we know there must be a loop in y, i.e. $y=u v w$ with $q=|v|>0$ such that $x u v^{i} w z \in L(P)$ for all $i \in \mathbb{N}$.

Let $i=2$. We expect $x u v^{2} w z \in L(P)$. If $u=a^{s}, v=a^{q}, w=a^{t}$, then we get $\mathrm{a}^{s+2 q+t} \mathrm{ba}^{n} \in$ $L(P)$. But this word is not in L, since $q>0$, and hence $s+2 q+t>n$. Therefore, $P_{a b}$ is not regular.

13 (15 points). Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow E\{P\} \mid \varepsilon \\
& P \rightarrow V=S \mid \varepsilon \\
& V \rightarrow \mathrm{a}|\mathrm{~b}| \mathrm{c} \\
& E \rightarrow!\mid ? D \\
& D \rightarrow P S
\end{aligned}
$$

To use this grammar in an LL(1) parser, we need to determine several properties of this grammar. Fill out the table below by computing the values in the columns for the appropriate rows. Use True and False for property values and set notation for everything else.

Solution 13.

NT	Production	empty	emptyRhs	first	firstRhs	follow	lookAhead
S		True		$\{!, ?\}$		$\{\{\},,!, ?\}$	
	$S \rightarrow E\{P\}$		False		\{!,?\}		\{!,?\}
	$S \rightarrow \varepsilon$		True		\{ \}		$\{\{\},,!, ?\}$
P		True		\{a, b, c $\}$		$\{\{\},$,1 ,	$\begin{aligned} & \{a, b, c\} \\ & \{\{,\},!, ?\} \end{aligned}$
	$P \rightarrow V=S$		False		\{a, b, c \}		
	$P \rightarrow \varepsilon$		True		\{ \}		
V		False		$\{\mathrm{a}, \mathrm{b}, \mathrm{c}$ \}		$\{=\}$	
	$V \rightarrow \mathrm{a}$		False		\{a\}		\{a\}
	$V \rightarrow \mathrm{~b}$		False		\{b\}		\{b\}
	$V \rightarrow \mathrm{c}$		False		\{c\}		\{c\}
E		False		$\{!, ?\}$		\{ \{ \}	
	$E \rightarrow$!		False		\{! $\}$		\{! $\}$
	$E \rightarrow$? ${ }^{\text {d }}$		False		\{?\}		\{?\}
D		True		$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{l}$, ? $\}$	\}	\{ \{ \}	
	$D \rightarrow P S$		True		$\{\mathrm{a}, \mathrm{b}, \mathrm{c},!$,		$\{\{, \mathrm{a}, \mathrm{b}, \mathrm{c},!, ?\}$

Marking

One error in a column: -1
More than one error: -2.5
I didn't check the Rhs columns carefully, their function is to help fill out the other columns

14 (15 points). Consider the context-free grammar:

$$
\begin{aligned}
& S \rightarrow A S \\
& S \rightarrow \mathrm{~b} \\
& A \rightarrow S A \\
& A \rightarrow \mathrm{a}
\end{aligned}
$$

We want to use an LR parsing algorithm to parse sentences from this grammar. We start with extending the grammar with a new start-symbol S^{\prime}, and a production

$$
S^{\prime} \rightarrow S \$
$$

where $\$$ is a terminal symbol denoting the end of input.
Construct the $\operatorname{LR}(0)$ automaton for the extended grammar.
Solution 14. The LR(0) automaton corresponding to the full grammar looks as follows (each state is numbered before the production for future reference; the layout is not optimal, or, actually, terrible):

