
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Exam

Andres Löh

Monday, 7 December 2009, 09:00–12:00

Preliminaries

• The exam consists of 4 pages (including this page). Please verify that you got all
the pages.

• Write your name and student number on all submitted work. Also include the
total number of separate sheets of paper.

• For each task, the maximum score is stated. The total amount of points you can
get is 100.

• Try to give simple and concise answers. Write readable. Do not use pencils or
pens with red ink.

• You may answer questions in Dutch or English.

• When writing Haskell code, you may use Prelude functions and functions from
the Data.List, Data.Maybe, Data.Map, Control.Monad modules. Also, you may use
all the parser combinators from the uu-tc package. If in doubt whether a certain
function is allowed, please ask.

Good luck!

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

Context-free grammars

1 (10 points). Let A = {x, y, z}. Give context-free grammars for the following languages
over the alphabet A:

(a) L1 = {w |w ∈ A∗, #(x, w) > 3}

(b) L2 = {w |w ∈ A∗, #(x, w) < 3}

(c) L1 ∩ L2

Here, #(c, w) denotes the number of occurrences of a terminal c in a word w. •

Grammar analysis and transformation

Consider the following context-free grammar G over the alphabet {a, b, c} with start
symbol S:

S→ SaSa
S→ SaSbSa
S→ b

2 (10 points). For each of the following words, answer the question whether it is in
L(G). If yes, give a parse tree. If not, argue informally why the word cannot be in the
language.

(a) babababba

(b) bababababa •

3 (11 points). Simplify the grammar G by transforming it in steps. Perform as many as
possible of the following transformations: removal of left recursion, left factoring, and
removal of unreachable productions. •

Alternative definitions of parser combinators

In the following tasks, you are not supposed to make use of the internal implementation
of parser combinators.

4 (4 points). Define (<$>) in terms of succeed and (<∗>). •

5 (5 points). Let

anySymbol :: Parser s s

be a parser that consumes any single symbol in the input and returns it. The parser
only fails if the end of the input has been reached. Define

symbol :: Eq s⇒ s→ Parser s s

in terms of anySymbol, succeed, (>>=) and empty. •

2

2

Combinators for permutations

6 (4 points). Write a parser combinator

perms2 :: Parser s a→ Parser s b→ Parser s (a, b)

such that perms2 p q parses p followed by q, or q followed by p, and returns the results
in a pair. Pay attention to the order in which the results are returned! •

7 (10 points). Now write a parser combinator

perms3 :: Parser s a→ Parser s b→ Parser s c→ Parser s (a, b, c)

where perm3 p q r parses any permutation of p, q and r.
If you find a way of improving the efficiency of the resulting parser, explain (for

example, in terms of the underlying grammar) what has to be done. It is not necessary
to give the resulting parser, however. •

Parsing logical propositions

Here is a grammar for logical propositions with start symbol P:

P→ P ∧ P
| P ∨ P
| P⇒ P
| ¬ P
| Ident
| (P)
| 1
| 0

Propositions can be composed from the constants true (1) and false (0) by using nega-
tion, conjunction, disjunction and implication, and parentheses for grouping.

Furthermore, propositions can contain variables – the nonterminal Ident represents
an identifier consisting of one or more letters.

A corresponding abstract syntax in Haskell is:

data P = And P P
| Or P P
| Implies P P
| Not P
| Var String
| Const Bool

8 (10 points). Resolve the operator priorities in the grammar as follows: negation (¬)
binds stronger that implication (⇒), which in turn binds stronger than conjunction (∧),
which in turn binds stronger than disjunction (∨). Furthermore, implication associates
to the right, whereas conjunction and disjunction associate to the left. Give the resulting
grammar. •

3

2

9 (11 points). Give a parser that recognizes the grammar from Task 8 and produces a
value of type P:

parseP :: Parser Char P

You can assume that the symbols ¬,⇒, ∧, and ∨ are just characters. You can use chainl
and chainr, but if you want more advanced abstractions such as gen from the lecture
notes, you have to define them yourself. You may assume that spaces are not allowed
in the input. •

10 (10 points). Define an algebra type and a fold function for type P. •

11 (10 points). Using the algebra and fold (or alternatively directly), define an evaluator
for propositions:

evalP :: P→ Env→ Bool

The environment of type Env should map free variables to Boolean values. You can
either use a list of pairs or a finite map with the following interface to represent the
environment:

data Map k v — abstract type, maps keys of type k to values of type v
empty :: Map k v
(!) :: Ord k⇒ Map k v→ k→ v
insert :: Ord k⇒ k→ v→ Map k v→ Map k v
delete :: Ord k⇒ k→ Map k v→ Map k v
member :: Ord k⇒ k→ Map k v→ Bool
fromList :: Ord k⇒ [(k, v)]→ Map k v

•

12 (5 points). Implement a tautology checker for propositions of type P:

tautology :: P→ Bool

A proposition is a tautology if and only if it evaluates to True regardless of the values
of any of its free varaibles.

It may be helpful to use the following function assignments that produces a list of all
possible Boolean assignments for a list of identifiers:

assignments :: [String]→ [[(String, Bool)]]
assignments [] = [[]]
assignments (n : ns) = [(n, x) : xs | x← [True, False], xs← assignments ns]

You can use evalP – even if you have not implemented it – in the definition of tautology.
•

13 (meta question). How many out of the 100 possible points do you think you will get
for this exam? •

4

2

