
ST Master Course on Advanced Functional Programming
Friday, April 21, 2006 (9:00-12:00)

The exam consists of 5 open questions: the maximum number of points for each question is given
(100 points in total). Give short and precise answers. If a Haskell function is asked for, try to
find an elegant solution. It is recommended to read all parts of a question before you provide an
answer. You may consult course material during the test. Good luck!

1 Counter Panel (15 points)

A counter panel is a panel that contains a text label showing a value, and a decrement, an
increment, and a reset button. Such a panel is polymorphic in the value it controls, as long as we
can show and compare values of that type. Furthermore, we use the Enum type class to implement
the decrement and increment operations: pred (for decrement) and succ (for increment) both have
type Enum a ⇒ a → a. The following frame contains two counter panels for characters:

The status bar displays GT , which is the result of comparing the two current values (because
’F’ > ’C’). The value of a counter panel is restricted to a minimum and a maximum value. For
this, we introduce another type class:

class (Show a,Ord a,Enum a)⇒ MinMax a where
minValue :: a
maxValue :: a

instance MinMax Char where
minValue = ’A’
maxValue = ’Z’

The data type Control (from the second lab assignment) is used to implement the observer/observable
pattern.

data Control a = C{model :: IORef a, observers :: IORef [IO ()]}

createControl :: a → IO (Control a)
createControl a =

do m ← newIORef a
obs ← newIORef []
return (C m obs)

getValue :: Control a → IO a
getValue = readIORef ◦model

setValue :: Control a → a → IO ()
setValue ctrl a =

do writeIORef (model ctrl) a
readIORef (observers ctrl) >>= sequence

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

addObserver :: Control a → IO ()→ IO ()
addObserver ctrl callback =

modifyIORef (observers ctrl) (callback :) >> callback

Now we can define the function main, which creates a status bar, two counter panels, and puts
these into a frame.

main :: IO ()
main = start $

do f ← frame [text := "Counters"]
status ← statusField []

(cp1 , ctrl1 :: Control Char)← counterPanel f
(cp2 , ctrl2 :: Control Char)← counterPanel f

let callback c = addObserver c (updateBar status ctrl1 ctrl2)
mapM callback [ctrl1 , ctrl2]

set f [statusbar := [status], layout := row 10 [widget cp1 ,widget cp2]]

Two functions used by main are not yet defined: their type signatures are:

updateBar :: MinMax a ⇒ StatusField → Control a → Control a → IO ()
counterPanel :: MinMax t ⇒Window a → IO (Panel (),Control t)

a) Give a definition for updateBar such that the status bar reflects the comparison of the two
counter characters. Use compare :: Ord a ⇒ a → a → Ordering for comparing the Chars.

updateBar sf ctrl1 ctrl2 =
do x ← getValue ctrl1

y ← getValue ctrl2
set sf [text := show (x ‘compare‘ y)]

b) Define the function counterPanel such that:

• A new control and a new panel are created. Use minValue as the initial value.

• The panel should contain one text label and three buttons. The layout of the panel
should resemble the layout of the screenshot.

• Implement the command events for the three buttons. Make sure that the value remains
between minValue and maxValue at all time. The reset button should set the value to
minValue.

• The text label showing the counter panel’s value should change whenever the value of
its control changes.

2
2

counterPanel w =
do ctrl ← createControl minValue

p ← panel w []
txt ← staticText p []
decr ← button p [text := "(-)", on command := onDecr ctrl]
incr ← button p [text := "(+)", on command := onIncr ctrl]
reset ← button p [text := "reset", on command := onReset ctrl]
set p [layout := margin 10 $ column 10

[widget txt , row 10 [widget decr ,widget incr ,widget reset]]]
addObserver ctrl (updateText txt ctrl)
return (p, ctrl)

-- event handlers
onDecr ctrl = changeValue ctrl (max minValue ◦ pred)
onIncr ctrl = changeValue ctrl (min maxValue ◦ succ)
onReset ctrl = setValue ctrl minValue

updateText :: Show a ⇒ StaticText ()→ Control a → IO ()
updateText t ctrl =

do x ← getValue ctrl
set t [text := show x]

changeValue :: Control a → (a → a)→ IO ()
changeValue control f =

do a ← getValue control
setValue control (f a)

c) Suppose that we want to share the value of the two counters: pressing the (+) button of
the left counter also increments the value displayed by the right counter (and vice versa).
Describe how the program should be changed (code is not required).

Instead of creating a Control inside the counterPanel function, we will pass a Control to this
function: counterPanel now expects two arguments. Only one Control is created in the main
function, which is then passed to both counterPanels.

main :: IO ()
main = start $

do ...
ctrl ← createControl (minValue :: Char)
cp1 ← counterPanel f ctrl
cp2 ← counterPanel f ctrl
...

2 List Monad (25 points)

The following list comprehension generates an infinite list containing infinite lists:

squareList :: [[Int]]
squareList = [[sq , sq ∗ 2 . .] | i ← [1 . .], let sq = i ∗ i]

This list of lists could be visualized as follows:

(1 : 2 : 3 : 4: ...) : (4 : 8 : 12 : 16: ...) : (9 : 18 : 27 : 36: ...) : (16 : 32 : 48 : 64: ...) : ...

3
2

We have the Prelude function concat at our disposal to flatten this list. However, concat squareList
will only return elements from the first list. The function join, defined below, has concat ’s type,
but takes elements in a diagonal fashion:

join :: [[a]]→ [a]
join = rec []

where
rec [] [] = []
rec as bs =

let notEmpty = not ◦ null
(hd , tl) = splitAt 1 bs
rest = hd ++ map tail as

in map head as ++ rec (filter notEmpty rest) tl

]

]

1 2 3

4

9

[, 16

8 16

18 27

32 48 64

...

4

12

]

..., , , ,

36 ..., , , ,

..., , , ,

..., , , ,[[

[

[,

,

,

]

]

Indeed, the expression take 10 (join squareList) evaluates to [1, 4, 2, 9, 8, 3, 16, 18, 12, 4].

a) Explain in your own words why the potentially dangerous functions head and tail in join’s
definition are safe (no pattern match failures).

The functions head and tail are both mapped over as (rec’s first argument). All lists in as are
non-empty because we start with the empty list (contains no list at all), and for each recursive
call to rec we first throw away all empty lists (filter notEmpty rest).

b) We continue with the introduction of a wrapper data type for a normal Haskell list:

newtype List a = List{ listify :: [a]} deriving Eq

This brings into scope the unwrapper function listify of type List a → [a]. Make List an
instance of the Functor type class:

class Functor f where
fmap :: (a → b)→ f a → f b

Because normal lists are in the Functor type class, we can write:

instance Functor List where
fmap f = List ◦ fmap f ◦ listify

c) Give a point-free definition for joinList :: List (List a) → List a, which uses the function
join to combine lists. There will be a small penalty for a definition that is not point-free.

joinList = List ◦ join ◦ listify ◦ fmap listify

d) Having join and map (or actually, fmap) defined makes it easy to define the monadic (>>=)
operator. Make List an instance of the Monad type class. Of course you may reuse code
defined earlier.

instance Monad List where
return a = List [a]
as >>= f = joinList (fmap f as)

e) Remember the three algebraic laws for monads:

4
2

return x >>= f ≡ f x (left unit)
m >>= return ≡ m (right unit)

m1 >>= (λx → m2 >>= (λy → m3)) ≡ (m1 >>= (λx → m2)) >>= (λy → m3) (bind)
assuming that x does not appear free in m3

Do the monad laws hold for the instance defined at d)? If you think they hold, give a short
motivation (no formal proof is required). Otherwise, give a counter-example.

The first two laws hold, but not (bind). For proving the left and right unit laws, you can use the
following properties of the join function:

join [xs] == xs -- only one row
join (map (λx → [x]) xs) == xs -- only one column

To construct a counter-example for (bind), we choose m1 = List [1, 2], m2 = List [x , x], and
m3 = List [y , y]:

m1 >>= (λx → m2 >>= (λy → m3))
= List [1, 2] >>= (λx → List [x , x] >>= (λy → List [y , y]))
= List [1, 2, 1, 2, 1, 2, 1, 2]

whereas

(m1 >>= (λx → m2)) >>= (λy → m3)
= (List [1, 2] >>= (λx → List [x , x])) >>= (λy → List [y , y])
= List [1, 2, 1, 1, 2, 2, 1, 2]

f) Define three QuickCheck properties to check the monad laws for your List instance. You
may assume that a random data generator for Lists is provided.

The type signatures are required by QuickCheck.

-- quickCheck leftUnit returns "OK, passed 100 tests."
leftUnit :: (Int → List Int)→ Int → Bool
leftUnit f x = (return x >>= f) == f x

-- quickCheck rightUnit returns "OK, passed 100 tests."
rightUnit :: List Int → Bool
rightUnit m = (m >>= return) == m

-- quickCheck bind returns "Falsifiable."
bind :: List Int → (Int → List Int)→ (Int → List Int)→ Bool
bind m f g = ((m >>= f) >>= g) == (m >>= (λx → f x >>= g))

g) Suppose we want to have a monad transformer for List . Give a suitable type definition for
this transformer. You do not have to give the instance declarations.

newtype ListT m a = ListT (m [a])

5
2

3 Operational Semantics (20 points)

We will study the behavior of the following function:

f :: (Int , (Int , Int))→ [Int]
f (a, (b, c)) = 0 : a : f (c, (a, b))

a) Consider the result of f (1 + 2 + 3, (0, 0)). Whether or not the subexpression 1 + 2 + 3 is
evaluated and reduced to 6 depends on the context of the expression. Describe two situations:
one in which the reduction takes place, and one in which the subexpression is not evaluated.

Reduction takes place if we need the second element in the list:

f (1 + 2 + 3, (0, 0)) !! 1
= ⊥

The subexpression is not evaluated if the list’s elements are not evaluated:

null $ f (1 + 2 + 3, (0, 0))
= False

To check whether or not the reduction takes place, replace 1 + 2 + 3 by ⊥.

b) The functions g , h, and k are variations on f :

g ∼(a, (b, c)) = 0 : a : g (c, (a, b))
h (a,∼(b, c)) = 0 : a : h (c, (a, b))
k (a,∼(b, c)) = 0 : a : seq b (k (c, (a, b)))

Remember that the expression x ‘seq ‘ y evaluates x to weak head normal form (WHNF) and
then returns y . Indicate as precise as possible at which point the evaluation of the expression
show $ f (1,⊥) diverges and returns ⊥. Answer the same question for g , h, and k when
used instead of f .

f diverges directly when matching (1,⊥) against (a, (b, c)):

show $ f (1,⊥)
= "*** Exception: Prelude.undefined"

g delays the pattern match, and diverges when a (the list’s second element) is needed:

show $ g (1,⊥)
= "[0,*** Exception: Prelude.undefined"

h delays pattern matching against ⊥ until after the recursive call:

show $ h (1,⊥)
= "[0,1,0,*** Exception: Prelude.undefined"

k diverges as a result of seq-ing the value b (for which we have to pattern match):

show $ k (1,⊥)
= "[0,1*** Exception: Prelude.undefined"

c) Evaluating length xs has one of the following outcomes (depending on xs):

• The length of the list is returned.
Example: length [1 . . 10].

6
2

• An exception is thrown, or the computation is non-terminating.
Examples: length (head []) and length [1 . .].

What is the outcome of evaluating length $ f (1,⊥)? Answering with “the length” or “an
exception” suffices. Answer the same question for g , h, and k when used instead of f .

length $ f (1,⊥)
= ⊥

length $ g (1,⊥)
= infinite computation

length $ h (1,⊥)
= infinite computation

length $ k (1,⊥)
= ⊥

d) Write a function

seqTriple :: (a, (b, c))→ (a, (b, c))

that forces evaluation to WHNF of all three components.

seqTriple p@(a, (b, c)) = a ‘seq ‘ b ‘seq ‘ c ‘seq ‘ p

4 Generalized Algebraic Data Types (20 points)

Consider the following data type declarations:

data Succ n
data Zero

data LengthList n a where
Cons :: a → LengthList n a → LengthList (Succ n) a
Nil :: LengthList Zero a

Be careful: Succ and Zero are types, not values. The data types Succ and Zero are empty: no
value of such a type exists (except for ⊥). LengthList ’s first type argument is a phantom type,
which we use for encoding the length of the list using Succ and Zero.

a) What type is inferred for the expression Cons 1 (Cons 2 (Cons 3 Nil))?

Because the numeric literals are overloaded, the inferred type is:

Num a ⇒ LengthList (Succ (Succ (Succ Zero))) a

The more specific type with Int or Integer is also approved.

b) Assume that we want Append , which combines two lists, to be LengthList ’s third constructor
function. Because the length of xs (n1) and the length of ys (n2) together determine the
length of Append xs ys (n = n1 + n2), we need a type class for “adding two types”:

class Add n1 n2 n | n1 n2 → n

We extend LengthList ’s GADT with the following constructor function:

Append :: Add n1 n2 n ⇒ LengthList n1 a → LengthList n2 a → LengthList n a

Explain the purpose of the functional dependency in the type class Add .

7
2

The functional dependency states that Add ’s third type argument is uniquely determined by the
first two type arguments. This restricts the instances that can be given for Add (they must
adhere to the dependency) and it allows the compiler to improve/simplify types containing an
Add predicate. For example, the expression Append (Cons 1 Nil) Nil can be given the type

Add (Succ Zero) Zero a ⇒ LengthList a Int

which can then be improved (using the functional dependency) to:

LengthList (Succ Zero) Int

c) Give instance declarations such that we can add Succs and Zeros on the type-level. Hint:
try to find an inductive definition on the value-level first.

On the value-level, add can be defined as (assuming that Succ and Zero are value constructors):

(Succ n1) ‘add ‘ n2 = Succ (n1 ‘add ‘ n2)
Zero ‘add ‘ n2 = n2

On the type-level, this corresponds to the following instances:

instance Add Zero t t
instance Add t1 t2 t3 ⇒ Add (Succ t1) t2 (Succ t3)

Because the type class Add has no class methods, its instance declarations are also empty.

d) Consider the following two conversion functions:

withLength :: [a]→ LengthList n a
withoutLength :: LengthList n a → [a]

Give a definition for these two functions: also take the constructor function Append into
account. If you feel that one (or two) of these functions cannot be defined, then motivate
your judgement instead.

Although we could define

withLength = foldr Cons Nil

this definition will not type-check. In fact, we are not able to construct a LengthList of an arbitrary
length (remember that the type variable n in withLength’s type signature is universally quantified).
The other way around is straightforward though:

withoutLength Nil = []
withoutLength (Cons x xs) = x : withoutLength xs
withoutLength (Append xs ys) = withoutLength xs ++ withoutLength ys

e) The Prelude’s function head throws an exception when applied to the empty list. We could
provide a similar function for LengthList . Because the length of the list is statically known
(it is part of the type), we can define a function safeHead that returns the first element for
a non-empty list, and results in a type error when applied to Nil or Append Nil Nil . Give a
type signature and a definition for this function.

safeHead :: LengthList (Succ n) a → a
safeHead = head ◦ withoutLength

8
2

5 Stream Functions (20 points)

Recall the arrow of stream functions:

newtype SF a b = SF{runSF :: [a]→ [b]}

This arrow supports all operations of the Arrow and the ArrowLoop type classes. For your
convenience, here is a list of available combinators for composing stream functions:

arr :: Arrow arr ⇒ (a → b)→ arr a b
(>>>) :: Arrow arr ⇒ arr a b → arr b c → arr a c
first :: Arrow arr ⇒ arr a b → arr (a, c) (b, c)
second :: Arrow arr ⇒ arr b c → arr (a, b) (a, c)
(∗∗∗) :: Arrow arr ⇒ arr a c → arr b d → arr (a, b) (c, d)
(&&&) :: Arrow arr ⇒ arr a b → arr a c → arr a (b, c)

loop :: ArrowLoop arr ⇒ arr (a, c) (b, c)→ arr a b

In addition to these arrow combinators, we provide two more utility functions: delay for delaying
a stream by one element, and plus for adding two values of type Int .

delay :: a → SF a a
delay x = SF (x :)

plus :: Arrow arr ⇒ arr (Int , Int) Int
plus = arr (uncurry (+))

These are all the ingredients needed to construct the cyclic machine depicted in Figure 1. In
Haskell, this machine is given the type SF Int Int .

plus

plus
delay 0

delay 0

Figure 1: A stream function with two plus and two delay arrows.

a) Suppose we supply the stream (repeat 1) to this machine. Then what are the first five
elements of the output stream? Indicate briefly how you arrived at your answer.

9
2

Consider the input wire (repeat 1), and the two wires used as input for the leftmost plus arrow.
The values of the output wire can be computed by taking the sum of the three wires (for each
position). Wire 1 and wire 2 are equivalent to the output wire, except for a delay of 1 or 2,
respectively.

input : 1 , 1 , 1 , 1 , 1 , 1 , ...
wire 1 : 0 , 1 , 2 , 4 , 7 , 12 , ...
wire 2 : 0 , 0 , 1 , 2 , 4 , 7 , 12
output : 1 , 2 , 4 , 7 , 12 , ...

We can check our answer by running the machine to be defined for the next question:

take 5 (runSF machine (repeat 1))
= [1, 2, 4, 7, 12]

b) Define the machine of Figure 1 using the arrow combinators.

machine :: SF Int Int
machine = loop (second plus >>> plus >>>

arr id &&& (delay 0 >>> arr id &&& delay 0))

c) By choosing the right input stream for our machine, we can compute the sequence of Fi-
bonacci numbers:

0 : 1 : 1 : 2 : 3 : 5 : 8 : 13 : 21 : 34 : ...

Define the infinite list

fibs :: [Int]

that returns all Fibonacci numbers by running the stream function you have defined for
question b).

fibs = runSF machine (0 : 1 : repeat 0)

d) The sequence of Fibonacci numbers can be computed by adding the two previous Fibonacci
numbers. This corresponds nicely with the fact that our machine contains two delay and two
plus arrows. We will generalize our machine. Write a recursive function delays that takes an
integer n and then composes n delay components similar to the machine in Figure 1. This
function should have the following type:

delays :: Int → SF Int [Int]

All lists in the output stream should have length n (“the number of wires used for feedback”).
Hint: this observation may help you to define the base case for delays.

delays 0 = arr (const [])
delays n = delay 0 >>> arr id &&& delays (n − 1) >>> arr (uncurry (:))

e) Define the function

genMachine :: Int → SF Int Int

that generalizes the stream function shown in Figure 1.

genMachine n = loop (second (arr sum) >>> plus >>> arr id &&& delays n)

Note that genMachine 2 is equivalent to machine defined for question b).

10
2

