
INFOAFP – Exam

Andres Löh

Wednesday, 16 April 2008, 09:00–12:00

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

Evaluation strategies (19 points total)

1 (5 points). Give an example of a Haskell expression of type Bool that evaluates to True
and that would not terminate (i.e., loop forever) in a language with strict evaluation.

Using equational reasoning, give the reduction sequence of your expression to True
and indicate clearly where a strict reduction strategy would select another redex. •

2 (4 points). Haskell has non-strict semantics (i.e., the implementations use lazy evalu-
ation) and is called a pure language. (S)ML on the other hand has strict semantics and
is an impure language.

What does purity mean in this context? Give an (small!) example of why Haskell is
considered pure and (S)ML is not. [Syntactic correctness, particularly of (S)ML code, is
not important.] •

2

2

3 (4 points). Would a lazy impure language or a strict pure language be possible?
Would such programming languages be useful? Discuss briefly. •

4 (6 points). Consider the following Haskell functions. Divide the functions into equiv-
alence classes, i.e., group the functions that are semantically equivalent (efficiency is
irrelevant). Give as many examples as needed to demonstrate that each of the classes
has indeed different behaviour.

s1 :: [a]→ b→ b
s1 xs y = case xs of { []→ y; → y}

s2 :: [a]→ b→ b
s2 xs y = seq xs y

s3 :: [a]→ b→ b
s3 xs y = y

s4 :: [a]→ b→ b
s4 xs y = if null xs then y else y

s5 :: [a]→ b→ b
s5 xs y = if map (const 0) xs = = [] then y else y

s6 :: [a]→ b→ b
s6 xs y = case xs of { []→ y; [x]→ y; → y}

s7 :: [a]→ b→ b
s7 xs y = seq [xs] y

3

2

Interactive programs (12 points total)

Consider the following datatype:

data GP a = End a
| Get (Int→ GP a)
| Put Int (GP a)

A value of type GP can be used to describe programs that read and write integer values
and return a final result of type a. Such a program can end immediately (End). If it
reads an integer, the rest of the program is described as a function depending on this
integer (Get). If the program writes an integer (Put), the value of that integer and the
rest of the program are recorded.

The following expression describes a program that continuously reads integers and
prints them:

echo = Get (λn→ Put n echo)

5 (1 point). What is the (inferred) type of echo?

run :: GP a→ IO a

6 (4 points). Write a function

that can run a GP-program in the IO monad. A Get should read an integer from the
console, and Put should write an integer to the console.

Here is an example run from GHCi:

Main〉 run echo
? 42
42
? 28
28
? 1
1
? − 5
− 5
? Interrupted.
Main〉

[To better distinguish inputs from outputs, this version of run prints a question mark
when expecting an input. It is not required that your version does the same.] •

7 (3 points). Write a GP-program add that reads two integers, writes the sum of the two
integers, and ultimately returns (). •

8 (4 points). Write a GP-program accum that reads an integer. If the integer is 0, it
returns the current total. If the integer is not 0, it adds the integer to the current total,
prints the current total, and starts from the beginning. •

4

2

Simulation (21 points total)

9 (4 points). Instead of running a GP-program in the IO monad, we can also simulate
the behaviour of such a program by providing a (possibly infinite) list of input values.
Write a function

simulate :: GP a→ [Int]→ (a, [Int])

that takes such a list of input values and returns the final result plus the (possibly infi-
nite) list of all the output values generated. •

10 (3 points). What is the result of evaluating the following two expressions?

simulate accum [5, 4 . . 0]

simulate accum [5, 4 . . 1]

•11 (4 points). Define a QuickCheck property that states the following property using
simulate:

“If echo is given n numbers as input, then the first n numbers of its output will be
identical to the input.” •

12 (4 points). Which parts of the definition of simulate are covered by your property,
and which are not? (I.e., which parts of the definition of simulate would be highlighted
by HPC after running QuickCheck on your property – assuming that QuickCheck gen-
erates suitably random lists.) •

13 (6 points). This is an attempt to define a QuickCheck property for accum:

accumP :: [Int]→ Property
accumP xs = all (λx→ x > 0) xs =⇒

simulate accum (xs ++ [0]) = = (last sl, sl)
where sl = scanl1 (+) xs

Here, scanl1 is defined as follows

scanl1 :: (a→ a→ a)→ [a]→ [a]
scanl1 f [] = []
scanl1 f (x : xs) = scanl f x xs

scanl :: (a→ b→ a)→ a→ [b]→ [a]
scanl f x xs = x : case xs of

[] → []
y : ys→ scanl f (f x y) ys

There are at least two problems with this property. Describe how they can be fixed [a
description is sufficient]. •

5

2

Functors and monads (24 points total)

A map function for GP can be defined as follows:

instance Functor GP where
fmap f (End x) = End (f x)
fmap f (Get g) = Get (fmap f ◦ g)
fmap f (Put n x) = Put n (fmap f x)

14 (2 points). Describe the difference between the behaviour of run accum and the be-
haviour of run (fmap (∗2) accum). •

15 (8 points). Prove the first of the two laws using equational reasoning (and ignoring
that values can be ⊥).

Note that if you want to prove a property P p for any p :: GP a via structural induction,
you have to prove the following three cases:

∀x. P (End x)
∀g. (∀x.P (g x))⇒ P (Get g)
∀n p. P p⇒ P (Put n p)

(Here, ⇒ denotes logical implication.) Note that the second case is slightly unusual
due to the function argument of Get: you may assume that P (g x) holds for any value
of x! •

class (Monad m)⇒ MonadState s m | m→ s where
get :: m s
put :: s→ m ()

16 (5 points). Define a sensible monad instance for GP. •

17 (5 points). Define a sensible MonadState instance for GP. Recall the MonadState class:

•
18 (4 points). What is the difference between the normal state monad as defined in
module Control.Monad.State and GP? Discuss whether you think it is a good idea to
make GP an instance of MonadState. •

Type classes (10 points total, 5 bonus points)

19 (2 points). Consider this program:

equal :: (Eq s, MonadState s m)⇒ m Bool
equal = do

x← get
y← get
return (x = = y)

Is the given type signature the most general type signature for equal? What would
happen if the type signature would be omitted? •

6

2

20 (8 points). Translate type classes into explicit evidence in the above function equal.
Desugar the do-notation in the process [use the “simple” desugaring, without the pos-
sibility to pattern match on the left hand side of an arrow]. Define the dictionary types
that are required – you may omit class methods that are not relevant to this example.
You may also declare local abbreviations using let. •

21 (5 bonus points). Haskell does not offer a scoping mechanism for instances. Instances
are always exported from modules, even if nothing else is. Also, instances cannot be
local. For example,

let instance Eq Char where
x = = y = ord (toUpper x) = = ord (toUpper y)

in "hello" = = "HeLlo"

(using ord and toUpper from Data.Char) is not legal Haskell.
Why do you think this decision has been made? Are there any problems you can

think of? •

GADTs and kinds (14 points total)

Here is a variation of GP:

data GP′ :: ∗ → ∗ where
Return :: a→ GP′ a
Bind :: GP′ a→ (a→ GP′ b)→ GP′ b
Get′ :: GP′ Int
Put′ :: Int→ GP′ ()

This is a GADT. The type GP′ can trivially be made an instance of the classes Monad
and MonadState:

instance Monad GP′ where
return = Return
(>>=) = Bind

instance MonadState Int GP′ where
get = Get′

put = Put′

22 (6 points). A value of type GP can easily be transformed into a value of type GP′ as
follows:

gp2gp′ :: GP a→ GP′ a
gp2gp′ (End x) = Return x
gp2gp′ (Get f) = Get′ >>= λx→ gp2gp′ (f x)
gp2gp′ (Put n k) = Put′ n >> gp2gp′ k

Define a transformation in the other direction, i.e., a function

7

2

gp′2gp :: GP′ a→ GP a

such that gp′2gp ◦ gp2gp′ ≡ id for all values that do not contain ⊥. Does gp2gp′ ◦ gp′2gp
also yield the identity? [No formal proof is required.] •

23 (4 points). Do the monad laws hold for GP and GP′? [Give a counterexample if not,
argue briefly if yes – no formal proof is required.]

Describe advantages and disadvantages of the two variants. •

((∗ → ∗)→ ∗)→ ∗

and

(∗ → ∗)→ (∗ → ∗)→ (∗ → ∗)

24 (4 points). Define type synonyms of kind

without using any user-defined datatypes. •

