
Department of Information and Computing Sciences
Utrecht University

INFOAFP – Exam

Andres Löh

Monday, 19 April 2010, 09:00–12:00

Solutions

• Not all possible solutions are given.

• In many places, much less detail than I have provided in the example solution
was actually required.

• Solutions may contain typos.

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

Zippers (33 points total)

A zipper is a data structure that allows navigation in another tree-like structure. Con-
sider binary trees:

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving (Eq, Show)

A one-hole context for trees is given by the following datatype:

data TreeCtx a = NodeL () (Tree a) | NodeR (Tree a) ()
deriving (Eq, Show)

The idea is as follows: leaves contain no subtrees, therefore they do not occur in the
context type. In a node, we can focus on either the left or the right subtree. The context
then consists of the other subtree. The use of () is just to mark the position of the hole –
it is not really needed.

We can plug a tree into the hole of a context as follows:

plugTree :: Tree a→ TreeCtx a→ Tree a
plugTree l (NodeL () r) = Node l r
plugTree r (NodeR l ()) = Node l r

A zipper for trees encodes a tree where a certain subtree is currently in focus. Since
the focused tree can be located deep in the full tree, one element of type TreeCtx a is
not sufficient. Instead, we store the focused subtree together with a list of one-layer
contexts that encodes the path from the focus to the root node:

data TreeZipper a = TZ (Tree a) [TreeCtx a]
deriving (Eq, Show)

We can recover the full tree from the zipper as follows:

leave :: TreeZipper a→ Tree a
leave (TZ t cs) = foldl plugTree t cs

Consider the tree

tree :: Tree Char
tree = Node (Node (Leaf ’a’) (Leaf ’b’))

(Node (Leaf ’c’) (Leaf ’d’))

If we focus on the rightmost leaf containing ’d’, the corresponding zipper structure is

example :: TreeZipper Char
example = TZ (Leaf ’d’)

[NodeR (Leaf ’c’) (), NodeR (Node (Leaf ’a’) (Leaf ’b’)) ()]

2

2

1 (3 points). Define a function

enter :: Tree a→ TreeZipper a

that creates a zipper from a tree such that the full tree is in focus. •

Solution 1.

enter t = TZ t []

◦
Moving the focus from a tree down to the left subtree works as follows:

down :: TreeZipper a→ Maybe (TreeZipper a)
down (TZ (Leaf x) cs) = Nothing
down (TZ (Node l r) cs) = Just (TZ l (NodeL () r : cs))

The function fails if there is no left subtree, i. e., if we are in a leaf.

2 (8 points). Define functions

up :: TreeZipper a→ Maybe (TreeZipper a)
right :: TreeZipper a→ Maybe (TreeZipper a)

that move the focus from a subtree to its parent node or to its right sibling, respectively.
Both functions should fail (by returning Nothing) if the move is not possible. •

Solution 2. These are the simple definitions:

up (TZ t (c : cs)) = Just (TZ (plugTree t c) cs)
up = Nothing
right (TZ l (NodeL () r : cs)) = Just (TZ r (NodeR l () : cs))
right = Nothing

The function right fails if there is no immediate right sibling. If we want to move to the
right even if there is no immediate sibling, we can define

right′ :: TreeZipper a→ Maybe (TreeZipper a)
right′ z = right z ‘mplus‘ (up z >>= right′ >>= down)

◦

3 (6 points). Assuming a suitable instance

instance Arbitrary a⇒ Arbitrary (TreeZipper a)

consider the QuickCheck property

downUp :: (Eq a)⇒ TreeZipper a→ Bool
downUp z = (down z >>= up) = = Just z

Give a counterexample for this property, and suggest how the property can be im-
proved so that the test will pass. •

3

2

4 (4 points). Is

left :: TreeZipper a→ Maybe (TreeZipper a)
left z = up z >>= down

a suitable definition for left? Give reasons for your answer. [No more than 30 words.]
•

Solution 4. It moves to the left sibling when possible. In the root, left fails (which is
fine). In other nodes without left siblings, left returns to the same place. ◦

5 (6 points). The concept of a one-hole context is not limited to binary trees. Give a
suitable definition of ListCtx such that we can define

data ListZipper a = LZ [a] [ListCtx a]

and in principle play the same game as with the zipper for trees. Also define the func-
tion

plugList :: [a]→ ListCtx a→ [a]

the combines a list context with a list. •

Solution 5. There is no way to descend into an empty list, and only one way to descend
into a non-empty list. When descending to the tail, we have to remember the element
we pass, so the list context contains a single element:

type ListCtx a = a

Plugging is just cons-ing:

plugList = flip (:)

◦

6 (6 points). Discuss the necessity of up, down, left and right functions for the ListZipper,
and describe what they would do. No need to define them (although it is ok to do so).
[No more than 40 words.] •

Solution 6. The functions up and down correspond to moving left and right in the list,
respectively:

up :: ListZipper a→ Maybe (ListZipper a)
up (LZ xs (c : cs)) = Just (LZ (c : xs) cs)
up = Nothing
down :: ListZipper a→ Maybe (ListZipper a)
down (LZ (x : xs) cs) = Just (LZ xs (x : cs))
down = Nothing

The functions left and right are not needed, as there are no siblings in the case of lists. ◦

4

2

Type isomorphisms (12 points total)

7 (6 points). A different definition for one-hole contexts of trees is the following:

data Dir = L | R
type TreeCtx′ a = (Dir, Tree a)

Show that, ignoring undefined values, the types TreeCtx and TreeCtx′ are isomorphic,
by giving conversion functions and stating the properties that the conversion functions
must adhere to (no proofs required). •

Solution 7. The conversion functions are:

from :: TreeCtx a→ TreeCtx′ a
from (NodeL () r) = (L, r)
from (NodeR l ()) = (R, l)
to :: TreeCtx′ a→ TreeCtx a
to (L, r) = NodeL () r
to (R, l) = NodeR l ()

The conversion functions must be mutual inverses:

∀(c :: TreeCtx a). to (from c) ≡ c
∀(c :: TreeCtx′ a). from (to c) ≡ c

It is very easy to see that these properties hold. ◦

8 (6 points). In Haskell’s lazy setting, how many different values are there of type
TreeCtx Bool if we restrict the occurrences of Tree Bool to be leaves. And how many
different values are there of type TreeCtx′ Bool given the same restriction? (Hint: note
that the use of () in the definition of TreeCtx is relevant here.) •

Solution 8. For TreeCtx Bool there are thirteen (or seventeen):

• ⊥,

• for NodeL, there are six:

NodeL ⊥ (Leaf ⊥), NodeL () (Leaf ⊥), NodeL ⊥ (Leaf True), NodeL ⊥ (Leaf False),
NodeL () True, NodeL () False,

• and analogously, we get six for NodeR.

It is also ok to count NodeL ⊥ ⊥, NodeL () ⊥, NodeR ⊥ ⊥ and NodeR () ⊥.
For TreeCtx′ Bool there are ten (or thirteen): ⊥, (⊥, Leaf ⊥), (L, Leaf ⊥), (R, Leaf ⊥),

(⊥, Leaf True), (⊥, Leaf False), (L, Leaf True), (L, Leaf False), (R, Leaf True), (R, Leaf False).
If you counted the extra values before, then we should count (⊥,⊥), (L,⊥), and (R,⊥)
here as well. ◦

5

2

Lenses (14 points total, plus 5 bonus points)

A so-called lens is (among other things) a way to access a substructure of a larger struc-
ture by grouping a function to extract the substructure with a function to update the
substructure:

data a 7→ b = Lens {extract :: a→ b,
insert :: b→ a→ a}

(We assume here that we enable infix type constructors, and that 7→ is a valid symbol
for such a constructor.)

Lenses are supposed to adhere to the following two extract/insert laws:

∀(f :: a 7→ b) (x :: a). insert f (extract f x) x ≡ x
∀(f :: a 7→ b) (x :: b) (y :: a). extract f (insert f x y) ≡ x

A trivial lens is the identity lens that returns the complete structure:

idLens :: a 7→ a
idLens = Lens {extract = id, insert = const}

It is trivial to see that idLens fulfills the two laws.

9 (4 points). Define a lens that accesses the focus component of a tree zipper structure:

focus :: TreeZipper a 7→ Tree a

•

Solution 9.

focus = Lens {extract = λ(TZ t cs) → t,
insert = λt (TZ cs)→ TZ t cs}

◦

10 (4 points). Define a function that updates the substructure accessed by a lens accord-
ing to the given function:

update :: (a 7→ b)→ (b→ b)→ (a→ a)

•

Solution 10.

update (Lens ext ins) f x = ins (f (ext x)) x

◦

6

2

Lenses can be composed. Structures that support identity and composition are cap-
tured by the following type class:

class Category cat where
id :: cat a a
(◦) :: cat b c→ cat a b→ cat a c

For instance, functions are an instance of the category class, with the usual definitions
of identity and function composition:

instance Category (→) where
id = Prelude.id
(◦) = (Prelude.◦)

11 (6 points). Define an instance of the Category class for lenses:

instance Category (7→) where
. . .

•

Solution 11.

instance Category (7→) where
id = idLens
(◦) f g =

Lens {extract = extract f ◦ extract g,
insert = update g ◦ insert f }

◦

12 (5 bonus points). Prove using equational reasoning that if the two extract/insert laws
stated above hold for both f and g, then they also hold for f ◦ g. •

Solution 12. Let x :: a, f :: b 7→ c, g :: a 7→ b.

insert (f ◦ g) (extract (f ◦ g) x) x
≡ { definition of insert }

(update g ◦ insert f) (extract (f ◦ g) x) x
≡ { definition of (◦) }

update g (insert f (extract (f ◦ g) x)) x
≡ { definition of update }

insert g (insert f (extract (f ◦ g) x) (extract g x)) x
≡ { definition of extract }

insert g (insert f ((extract f ◦ extract g) x) (extract g x)) x

7

2

≡ { definition of (◦) }
insert g (insert f (extract f (extract g x)) (extract g x)) x

≡ { assumption on f }
insert g (extract g x) x

≡ { assumption on g }
x

Now let x :: b, y :: a, f :: b 7→ c and g :: a 7→ b.

extract (f ◦ g) (insert (f ◦ g) x y)
≡ { definition of extract }

(extract f ◦ extract g) (insert (f ◦ g) x y)
≡ { definition of (◦) }

extract f (extract g (insert (f ◦ g) x y))
≡ { definition of insert }

extract f (extract g ((update g ◦ insert f) x y))
≡ { definition of (◦) }

extract f (extract g (update g (insert f x) y))
≡ { definition of update }

extract f (extract g (insert g (insert f x y) y)
≡ { assumption on g }

extract f (insert f x y)
≡ { assumption on f }

x

◦

Monad transformers (22 points total)

Consider the monad TraverseTree, defined as follows:

type TraverseTree a = StateT (TreeZipper a) Maybe

13 (3 points). What is the kind of TraverseTree? •

Solution 13.

∗ → ∗ → ∗

◦

8

2

14 (6 points). Define a function

nav :: (TreeZipper a→ Maybe (TreeZipper a))→ TraverseTree a ()

that turns a navigation function like down, up, or right into a monadic operation on
TraverseTree. •

Solution 14.

nav f =
do

l← get
x← lift $ f l
put x

Note that using modify is problematic, because we cannot lift the argument to modify
into the outer monad. ◦

Given a lense and the MonadState interface, we can define useful helpers to access
parts of the monadic state:

getLens :: MonadState s m⇒ (s 7→ a)→ m a
getLens f = gets (extract f)
putLens :: MonadState s m⇒ (s 7→ a)→ a→ m ()
putLens f x = modify (insert f x)
modifyLens :: MonadState s m⇒ (s 7→ a)→ (a→ a)→ m ()
modifyLens f g = modify (update f g)

We can now define the following piece of code:

ops :: TraverseTree Char ()
ops =

do
nav down
x← getLens focus
nav right
putLens focus x
nav down
modifyLens focus (const $ Leaf ’X’)

15 (6 points). Given all the functions so far and once again tree

tree = Node (Node (Leaf ’a’) (Leaf ’b’))
(Node (Leaf ’c’) (Leaf ’d’))

what is the result of evaluating the following declaration:

test = leave (snd (fromJust (runStateT ops (enter tree))))

•

9

2

Solution 15. The result is

Node (Node (Leaf ’a’) (Leaf ’b’)) (Node (Leaf ’X’) (Leaf ’b’))

◦

16 (7 points). Explain how a compiler based on passing dictionaries for type classes can
construct the dictionary to pass to the modifyLens call in the last line of the definition of
ops above. •

Solution 16. The call to modifyLens requires an instance

MonadState (TreeZipper Char) (TraverseTree Char)

which after expanding the type synonym means

MonadState (TreeZipper Char) (StateT (TreeZipper Char) Maybe)

Reading classes as dictionary types, we thus need a dictionary of the type above. We
have the instances

instance Monad Maybe
instance Monad m⇒ MonadState s (StateT s m)

available, in other words, we can assume dictionaries:

monadMaybe :: Monad Maybe
monadState :: Monad m→ MonadState s (StateT s m)

The desired dictionary can thus be constructed by using

monadState monadMaybe

◦

Trees, shapes and pointers in Agda (19 points total)

Consider the definitions of List, N, Vec and Fin in Agda. These four types are related as
follows:

Natural numbers describe the shapes of lists (if we instantiate the element type of lists
to the unit type, we obtain a type isomorphic to the natural numbers). Indexing lists by
their shapes yields vectors. Finally, Fin is the type of pointers into vectors such that we
can define a safe lookup function.

Now consider binary trees (as before), given in Agda by:

data Tree (A : Set) : Set where
leaf : A→ Tree A
node : Tree A→ Tree A→ Tree A

10

2

The type of shapes for trees is given by:

data Shape : Set where
end : Shape
split : Shape→ Shape→ Shape

17 (5 points). Define a datatype STree of shape-indexed binary trees (i. e., STree corre-
sponds to Vec):

data STree (A : Set) : Shape→ Set where
. . .

•

Solution 17.

data STree (A : Set) : Shape→ Set where
leaf : A→ STree A end
node : ∀{s t} → STree A s→ STree A t→ STree A (split s t)

◦

18 (6 points). Define a datatype Path of shape-indexed pointers (i. e., Path corresponds
to Fin):

data Path : Shape→ Set where
. . .

Note that a value p of type Path s should point to an element in a tree of shape s. •

Solution 18.

data Path : Shape→ Set where
here : Path end
left : ∀{s t} → Path s→ Path (split s t)
right : ∀{s t} → Path t→ Path (split s t)

◦

19 (4 points). Define a function zipWith on shape-indexed trees that merges two trees
of the same shape and combines the elements according to the given function.

zipWith : ∀{A B C s} → (A→ B→ C)→
STree A s→ STree B s→ STree C s

•

11

2

Solution 19.

zipWith f (leaf x) (leaf y) = leaf (f x y)
zipWith f (node l1 r1) (node l2 r2) = node (zipWith f l1 l2) (zipWith f r1 r2)

◦

20 (4 points). Define a function lookup on shape-indexed trees

lookup : ∀{A s} → STree A s→ Path s→ A

that returns the element stored at the given path. •

Solution 20.

lookup (leaf x) here = x
lookup (node l r) (left p) = lookup l p
lookup (node l r) (right p) = lookup r p

◦

12

2

