
Department of Information and Computing Sciences
Utrecht University

INFOAFP – Exam

Andres Löh

Monday, 19 April 2010, 09:00–12:00

Preliminaries

• The exam consists of 7 pages (including this page). Please verify that you got all
the pages.

• A maximum of 100 points can be gained.

• For every task, the maximal number of points is stated. Note that the points are
distributed unevenly over the tasks.

• One task is marked as (bonus) and allows up to 5 extra points.

• Try to give simple and concise answers! Please try to keep your code readable!

• When writing Haskell code, you can use library functions, but make sure that you
state which libraries you use.

Good luck!

1

Dit tentamen is in elektronische vorm beschikbaar gemaakt door de TBC van A–Eskwadraat.
A–Eskwadraat kan niet aansprakelijk worden gesteld voor de gevolgen van eventuele fouten
in dit tentamen.

1

Zippers (33 points total)

A zipper is a data structure that allows navigation in another tree-like structure. Con-
sider binary trees:

data Tree a = Leaf a | Node (Tree a) (Tree a)
deriving (Eq, Show)

A one-hole context for trees is given by the following datatype:

data TreeCtx a = NodeL () (Tree a) | NodeR (Tree a) ()
deriving (Eq, Show)

The idea is as follows: leaves contain no subtrees, therefore they do not occur in the
context type. In a node, we can focus on either the left or the right subtree. The context
then consists of the other subtree. The use of () is just to mark the position of the hole –
it is not really needed.

We can plug a tree into the hole of a context as follows:

plugTree :: Tree a→ TreeCtx a→ Tree a
plugTree l (NodeL () r) = Node l r
plugTree r (NodeR l ()) = Node l r

A zipper for trees encodes a tree where a certain subtree is currently in focus. Since
the focused tree can be located deep in the full tree, one element of type TreeCtx a is
not sufficient. Instead, we store the focused subtree together with a list of one-layer
contexts that encodes the path from the focus to the root node:

data TreeZipper a = TZ (Tree a) [TreeCtx a]
deriving (Eq, Show)

We can recover the full tree from the zipper as follows:

leave :: TreeZipper a→ Tree a
leave (TZ t cs) = foldl plugTree t cs

Consider the tree

tree :: Tree Char
tree = Node (Node (Leaf ’a’) (Leaf ’b’))

(Node (Leaf ’c’) (Leaf ’d’))

If we focus on the rightmost leaf containing ’d’, the corresponding zipper structure is

example :: TreeZipper Char
example = TZ (Leaf ’d’)

[NodeR (Leaf ’c’) (), NodeR (Node (Leaf ’a’) (Leaf ’b’)) ()]

2

2

1 (3 points). Define a function

enter :: Tree a→ TreeZipper a

that creates a zipper from a tree such that the full tree is in focus. •
Moving the focus from a tree down to the left subtree works as follows:

down :: TreeZipper a→ Maybe (TreeZipper a)
down (TZ (Leaf x) cs) = Nothing
down (TZ (Node l r) cs) = Just (TZ l (NodeL () r : cs))

The function fails if there is no left subtree, i. e., if we are in a leaf.

2 (8 points). Define functions

up :: TreeZipper a→ Maybe (TreeZipper a)
right :: TreeZipper a→ Maybe (TreeZipper a)

that move the focus from a subtree to its parent node or to its right sibling, respectively.
Both functions should fail (by returning Nothing) if the move is not possible. •
3 (6 points). Assuming a suitable instance

instance Arbitrary a⇒ Arbitrary (TreeZipper a)

consider the QuickCheck property

downUp :: (Eq a)⇒ TreeZipper a→ Bool
downUp z = (down z >>= up) = = Just z

Give a counterexample for this property, and suggest how the property can be im-
proved so that the test will pass. •
4 (4 points). Is

left :: TreeZipper a→ Maybe (TreeZipper a)
left z = up z >>= down

a suitable definition for left? Give reasons for your answer. [No more than 30 words.]
•

5 (6 points). The concept of a one-hole context is not limited to binary trees. Give a
suitable definition of ListCtx such that we can define

data ListZipper a = LZ [a] [ListCtx a]

and in principle play the same game as with the zipper for trees. Also define the func-
tion

plugList :: [a]→ ListCtx a→ [a]

the combines a list context with a list. •
6 (6 points). Discuss the necessity of up, down, left and right functions for the ListZipper,
and describe what they would do. No need to define them (although it is ok to do so).
[No more than 40 words.] •

3

2

Type isomorphisms (12 points total)

7 (6 points). A different definition for one-hole contexts of trees is the following:

data Dir = L | R
type TreeCtx′ a = (Dir, Tree a)

Show that, ignoring undefined values, the types TreeCtx and TreeCtx′ are isomorphic,
by giving conversion functions and stating the properties that the conversion functions
must adhere to (no proofs required). •

8 (6 points). In Haskell’s lazy setting, how many different values are there of type
TreeCtx Bool if we restrict the occurrences of Tree Bool to be leaves. And how many
different values are there of type TreeCtx′ Bool given the same restriction? (Hint: note
that the use of () in the definition of TreeCtx is relevant here.) •

Lenses (14 points total, plus 5 bonus points)

A so-called lens is (among other things) a way to access a substructure of a larger struc-
ture by grouping a function to extract the substructure with a function to update the
substructure:

data a 7→ b = Lens {extract :: a→ b,
insert :: b→ a→ a}

(We assume here that we enable infix type constructors, and that 7→ is a valid symbol
for such a constructor.)

Lenses are supposed to adhere to the following two extract/insert laws:

∀(f :: a 7→ b) (x :: a). insert f (extract f x) x ≡ x
∀(f :: a 7→ b) (x :: b) (y :: a). extract f (insert f x y) ≡ x

A trivial lens is the identity lens that returns the complete structure:

idLens :: a 7→ a
idLens = Lens {extract = id, insert = const}

It is trivial to see that idLens fulfills the two laws.

9 (4 points). Define a lens that accesses the focus component of a tree zipper structure:

focus :: TreeZipper a 7→ Tree a

•

10 (4 points). Define a function that updates the substructure accessed by a lens accord-
ing to the given function:

update :: (a 7→ b)→ (b→ b)→ (a→ a)

•

4

2

Lenses can be composed. Structures that support identity and composition are cap-
tured by the following type class:

class Category cat where
id :: cat a a
(◦) :: cat b c→ cat a b→ cat a c

For instance, functions are an instance of the category class, with the usual definitions
of identity and function composition:

instance Category (→) where
id = Prelude.id
(◦) = (Prelude.◦)

11 (6 points). Define an instance of the Category class for lenses:

instance Category (7→) where
. . .

•

12 (5 bonus points). Prove using equational reasoning that if the two extract/insert laws
stated above hold for both f and g, then they also hold for f ◦ g. •

Monad transformers (22 points total)

Consider the monad TraverseTree, defined as follows:

type TraverseTree a = StateT (TreeZipper a) Maybe

13 (3 points). What is the kind of TraverseTree? •

14 (6 points). Define a function

nav :: (TreeZipper a→ Maybe (TreeZipper a))→ TraverseTree a ()

that turns a navigation function like down, up, or right into a monadic operation on
TraverseTree. •

Given a lense and the MonadState interface, we can define useful helpers to access
parts of the monadic state:

getLens :: MonadState s m⇒ (s 7→ a)→ m a
getLens f = gets (extract f)
putLens :: MonadState s m⇒ (s 7→ a)→ a→ m ()
putLens f x = modify (insert f x)

5

2

modifyLens :: MonadState s m⇒ (s 7→ a)→ (a→ a)→ m ()
modifyLens f g = modify (update f g)

We can now define the following piece of code:

ops :: TraverseTree Char ()
ops =

do
nav down
x← getLens focus
nav right
putLens focus x
nav down
modifyLens focus (const $ Leaf ’X’)

15 (6 points). Given all the functions so far and once again tree

tree = Node (Node (Leaf ’a’) (Leaf ’b’))
(Node (Leaf ’c’) (Leaf ’d’))

what is the result of evaluating the following declaration:

test = leave (snd (fromJust (runStateT ops (enter tree))))

•
16 (7 points). Explain how a compiler based on passing dictionaries for type classes can
construct the dictionary to pass to the modifyLens call in the last line of the definition of
ops above. •

Trees, shapes and pointers in Agda (19 points total)

Consider the definitions of List, N, Vec and Fin in Agda. These four types are related as
follows:

Natural numbers describe the shapes of lists (if we instantiate the element type of lists
to the unit type, we obtain a type isomorphic to the natural numbers). Indexing lists by
their shapes yields vectors. Finally, Fin is the type of pointers into vectors such that we
can define a safe lookup function.

Now consider binary trees (as before), given in Agda by:

data Tree (A : Set) : Set where
leaf : A→ Tree A
node : Tree A→ Tree A→ Tree A

The type of shapes for trees is given by:

data Shape : Set where
end : Shape
split : Shape→ Shape→ Shape

6

2

17 (5 points). Define a datatype STree of shape-indexed binary trees (i. e., STree corre-
sponds to Vec):

data STree (A : Set) : Shape→ Set where
. . .

•

18 (6 points). Define a datatype Path of shape-indexed pointers (i. e., Path corresponds
to Fin):

data Path : Shape→ Set where
. . .

Note that a value p of type Path s should point to an element in a tree of shape s. •

19 (4 points). Define a function zipWith on shape-indexed trees that merges two trees
of the same shape and combines the elements according to the given function.

zipWith : ∀{A B C s} → (A→ B→ C)→
STree A s→ STree B s→ STree C s

•

20 (4 points). Define a function lookup on shape-indexed trees

lookup : ∀{A s} → STree A s→ Path s→ A

that returns the element stored at the given path. •

7

2

