Exam Data Mining November 4, 2020, 17.00-20.00 hours Short answers

Question 1: Mixed Short Questions (20 points)

(a) To prevent overfitting.
(b) A random forest picks the best split from a randomly selected subset of the attributes in each node. Bagging picks the best split from all available attributes.
(c) 2 times.
(d) never say
say never
never again
(e) Problem: The link-attributes can not be computed because all node labels are unknown. Solution: Initial labels are predicted using only the object-attributes. Once we have predicted labels, the link-attributes can be computed. Label prediction and computation of link-attributes is iterated until convergence.

Question 2: Classification Trees (20 points)

(a)

$$
i\left(t_{1}\right)=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}, \quad i\left(t_{2}\right)=\frac{1}{3} \times \frac{2}{3}=\frac{2}{9}, \quad i\left(t_{3}\right)=\frac{4}{7} \times \frac{3}{7}=\frac{12}{49}
$$

(b)

$$
\Delta i=\frac{1}{4}-\left(\frac{3}{10} \times \frac{2}{9}+\frac{7}{10} \times \frac{12}{49}\right)=\frac{1}{84}
$$

(c) Let SMS denote the smallest minimizing subtree.

1. $T_{1}=T_{\max }$ is the SMS for $\alpha \in[0,0.06)$.
2. Prune in t_{2} to obtain T_{2}, which is the SMS for $\alpha \in[0.06,0.17)$.
3. The root node is the SMS for $\alpha \geq 0.17$.

Question 3: Frequent Sequence Mining (20 points)

Level 1:

Candidate	Support	Frequent?
M	3	$\boldsymbol{\checkmark}$
N	3	$\boldsymbol{\checkmark}$
O	3	$\boldsymbol{\checkmark}$
R	1	\boldsymbol{X}

Level 2:

Candidate	Support	Frequent?
MM	0	\boldsymbol{X}
MN	3	$\boldsymbol{\checkmark}$
MO	3	$\boldsymbol{\checkmark}$
NM	0	\boldsymbol{X}
NN	0	\boldsymbol{X}
NO	1	\boldsymbol{X}
OM	0	\boldsymbol{X}
ON	3	$\boldsymbol{\checkmark}$
OO	3	$\boldsymbol{\checkmark}$

Level 3:

Candidate	Support	Frequent?
MON	3	$\boldsymbol{\checkmark}$
MOO	3	$\boldsymbol{\checkmark}$
OOO	0	\boldsymbol{X}
OON	2	$\boldsymbol{\checkmark}$

Level 4:

Candidate	Support	Frequent?
MOON	2	$\boldsymbol{\checkmark}$

Question 4: Undirected Graphical Models (20 points)
(a) The formula is:

$$
\hat{n}(A, B, C, D, E)=\frac{n(A, C) n(B, C) n(D, C) n(E, C)}{n(C)^{3}}
$$

(b) When no marrying of parents is required (there are no "immoralities" or "v-structures"), then the independence properties of the directed graph are identical to those of its undirected version. The directed graph specified doesn't have any v-structures, and its skeleton is identical to the given undirected graph. Hence, the two graphs express exactly the same independence properties.
(c) The BN -factorisation is:

$$
P(A, B, C, D, E)=p(C) p(A \mid C) p(B \mid C) p(D \mid C) p(E \mid C)
$$

Plugging in the ML estimates gives

$$
\hat{P}(A, B, C, D, E)=\frac{n(C)}{N} \frac{n(A, C)}{n(C)} \frac{n(B, C)}{n(C)} \frac{n(D, C)}{n(C)} \frac{n(E, C)}{n(C)}
$$

To obtain fitted counts, we multiply by N and obtain

$$
\begin{aligned}
\hat{n}(A, B, C, D, E) & =n(C) \frac{n(A, C)}{n(C)} \frac{n(B, C)}{n(C)} \frac{n(D, C)}{n(C)} \frac{n(E, C)}{n(C)} \\
& =\frac{n(A, C) n(B, C) n(D, C) n(E, C)}{n(C)^{3}}
\end{aligned}
$$

Question 5: Bayesian Networks (20 points)

(a) Adding the edge $A \rightarrow D$ changes the parent set of node D, so we need to compute the change in contribution of node D to the loglikelihood score. In the initial model its contribution is:

$$
50 \log \frac{50}{100}+50 \log \frac{50}{100}=-69.3
$$

After adding $A \rightarrow D$, its contribution is:

$$
40 \log \frac{40}{60}+20 \log \frac{20}{60}+10 \log \frac{10}{40}+30 \log \frac{30}{40}=-60.7
$$

Hence, the change in loglikelihoodscore is:

$$
\Delta \mathcal{L}=-60.7+69.3=8.6
$$

(b) Adding the edge $A \rightarrow D$ adds one extra parameter to the model. Each additional parameter costs

$$
\frac{\log N}{2}=\frac{\log 100}{2}=2.3
$$

Hence, the change in BIC score is:

$$
\Delta \mathrm{BIC}=8.6-2.3=6.3
$$

(c) 2 and 3

