Exam Data Mining November 4, 2020, 17.00-20.00 hours Short answers

Question 1: Mixed Short Questions (20 points)

- (a) To prevent overfitting.
- (b) A random forest picks the best split from a randomly selected subset of the attributes in each node. Bagging picks the best split from all available attributes.
- (c) 2 times.
- (d) never say say never never again
- (e) Problem: The link-attributes can not be computed because all node labels are unknown. Solution: Initial labels are predicted using only the object-attributes. Once we have predicted labels, the link-attributes can be computed. Label prediction and computation of link-attributes is iterated until convergence.

Question 2: Classification Trees (20 points)

(a)

$$i(t_1) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}, \quad i(t_2) = \frac{1}{3} \times \frac{2}{3} = \frac{2}{9}, \quad i(t_3) = \frac{4}{7} \times \frac{3}{7} = \frac{12}{49}$$

(b)

$$\Delta \ i = \frac{1}{4} - \left(\frac{3}{10} \times \frac{2}{9} + \frac{7}{10} \times \frac{12}{49}\right) = \frac{1}{84}$$

- (c) Let SMS denote the smallest minimizing subtree.
 - 1. $T_1 = T_{\text{max}}$ is the SMS for $\alpha \in [0, 0.06)$.
 - 2. Prune in t_2 to obtain T_2 , which is the SMS for $\alpha \in [0.06, 0.17)$.
 - 3. The root node is the SMS for $\alpha \ge 0.17$.

Question 3: Frequent Sequence Mining (20 points)

Level 1:

Candidate	Support	Frequent?
М	3	\checkmark
Ν	3	\checkmark
Ο	3	\checkmark
R	1	×

Level 2:

Candidate	Support	Frequent?
MM	0	×
MN	3	\checkmark
MO	3	\checkmark
NM	0	×
NN	0	X
NO	1	X
OM	0	×
ON	3	\checkmark
OO	3	\checkmark

Level 3:

Candidate	Support	Frequent?
MON	3	\checkmark
MOO	3	\checkmark
000	0	×
OON	2	\checkmark

Level 4:

Candidate	Support	Frequent?
MOON	2	\checkmark

Question 4: Undirected Graphical Models (20 points)

(a) The formula is:

$$\hat{n}(A, B, C, D, E) = \frac{n(A, C)n(B, C)n(D, C)n(E, C)}{n(C)^3}$$

- (b) When no marrying of parents is required (there are no "immoralities" or "v-structures"), then the independence properties of the directed graph are identical to those of its undirected version. The directed graph specified doesn't have any v-structures, and its skeleton is identical to the given undirected graph. Hence, the two graphs express exactly the same independence properties.
- (c) The BN-factorisation is:

$$P(A, B, C, D, E) = p(C)p(A|C)p(B|C)p(D|C)p(E|C)$$

Plugging in the ML estimates gives

$$\hat{P}(A, B, C, D, E) = \frac{n(C)}{N} \frac{n(A, C)}{n(C)} \frac{n(B, C)}{n(C)} \frac{n(D, C)}{n(C)} \frac{n(E, C)}{n(C)}$$

To obtain fitted counts, we multiply by N and obtain

$$\hat{n}(A, B, C, D, E) = n(C) \frac{n(A, C)}{n(C)} \frac{n(B, C)}{n(C)} \frac{n(D, C)}{n(C)} \frac{n(E, C)}{n(C)}$$
$$= \frac{n(A, C)n(B, C)n(D, C)n(E, C)}{n(C)^3}$$

Question 5: Bayesian Networks (20 points)

(a) Adding the edge $A \to D$ changes the parent set of node D, so we need to compute the change in contribution of node D to the loglikelihood score. In the initial model its contribution is:

$$50\log\frac{50}{100} + 50\log\frac{50}{100} = -69.3$$

After adding $A \to D$, its contribution is:

$$40\log\frac{40}{60} + 20\log\frac{20}{60} + 10\log\frac{10}{40} + 30\log\frac{30}{40} = -60.7$$

Hence, the change in loglikelihoodscore is:

$$\Delta \mathcal{L} = -60.7 + 69.3 = 8.6$$

(b) Adding the edge $A \to D$ adds one extra parameter to the model. Each additional parameter costs

$$\frac{\log N}{2} = \frac{\log 100}{2} = 2.3$$

Hence, the change in BIC score is:

$$\Delta BIC = 8.6 - 2.3 = 6.3$$

(c) 2 and 3