Midterm Exam Soft Condensed Matter Theory, April 12, 2019, 09:00-12:00. This exam consists of 17 items, the maximum score for each item is 6 points. Write your name on each page. This is a closed-book exam, and electronic tools are not allowed. Give arguments for your answers and write clearly -unreadable answers are no anwers. You may use that the viscosity of water is $\eta=10^{-3} \mathrm{~Pa}$ s, the Bjerrum length in vacuum at room temperature is 56 nm , the Stokes-Einstein equation for the diffusion coefficient of a sphere of radius a reads $D=k_{B} T / 6 \pi \eta a$ with T the temperature and $k_{B}=1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$ the Boltzmann constant. The differential of the internal energy is $d U=T d S-p d V+\mu d N+\gamma d A+\psi d Q-f d L+\cdots$ with the usual meaning of symbols.
Problem 1 Consider a bulk fluid of N identical particles at temperature T and pressure p.
(a) Show that the combination $G(N, p, T)=U-T S+p V$ is the appropriate thermodynamic potential, and combine the differential of G with extensivity arguments to derive the Gibbs-Duhem equation.

Another one-component fluid, at chemical potential μ and temperature T in a volume V, is in contact with a planar solid substrate of area A. The equilibrium density profile is denoted by $\rho(z)$ with $z>0$ the distance from the substrate at $z=0$, with $\rho_{b} \equiv \rho(z \rightarrow \infty)$ the bulk density. The interfacial tension between the fluid and the substrate is denoted by $\gamma(\mu, T)$, such that the grand potential of the system reads $\Omega(\mu, V, T, A)=-p(\mu, T) V+\gamma(\mu, T) A$.
(b) Show that $\left(\frac{\partial \gamma}{\partial \mu}\right)_{T}=-\int_{0}^{\infty} d z\left(\rho(z)-\rho_{b}\right)$.

Problem 2 We now consider an aqueous 1:2 electrolye in the half space $z>0$ in contact with a solid electrode in the plane $z=0$ at known potential $\psi_{0}>0$. The solvent is viewed as a dielectric continuum with relative dielectric contant ϵ at room temperature T, such that the Bjerrum length is $\lambda_{B}=e^{2} /\left(4 \pi \epsilon_{0} \epsilon k_{B} T\right)$ with e the elementary charge. The system also contains dissolved monovalent pointlike cations (charge $+e$, density profile $\rho_{+}(z)$) and divalent pointlike anions (charge $-2 e$, density profile $\rho_{-}(z)$). For $z>0$ the electrostatic potential $\psi(z)$ satisfies the Poisson equation $e \psi^{\prime \prime}(z) / k_{B} T=-4 \pi \lambda_{B} q(z)$ with $e q(z)$ the charge density. Far from the electrode we set the potential to zero and $\rho_{+}(\infty)=\rho_{s}$ and $\rho_{-}(\infty)=\rho_{s} / 2$ with a known concentration ρ_{s}.
(a) Write $q(z)$ in terms of $\rho_{ \pm}(z)$, assume $\rho_{ \pm}(z)$ to be given by a Boltzmann distribution, and construct the nonlinear Poisson-Boltzmann (PB) equation for $\psi(z)$. Give appropriate boundary conditions.
(b) Consider small potentials $0<\psi_{0} \ll 10 \mathrm{mV}$, argue that the PB equation can be linearised as $\psi^{\prime \prime}(z)=\kappa^{2} \psi(z)$, and give an expression for the Debye length κ^{-1}.
(c) Solve the (linearised) PB equation using the boundary conditions, and calculate the surface charge density $e \sigma$ of the electrode assuming that $\psi(z \leq 0)=\psi_{0}$.
(d) Sketch $\rho_{+}(z)$ and $\rho_{-}(z)$ for $0<z<4 \kappa^{-1}$ for $\psi_{0}=10 \mathrm{mV}$ in a single graph that includes a scale on both axes, and give an interpretation of the plot in a few words.
(e) Give numerical estimates for (i) λ_{B}, (ii) κ^{-1}, and (iii) the volume (in nm^{3}) per ion in the bulk, all for the case that $\rho_{s}=1 \mathrm{mM}$.

Problem 3 Consider a homogeneous and isotropic macroscopic 3D bulk fluid of N identical classical particles (mass m, positions \mathbf{r}_{i}, momenta \mathbf{p}_{i}) in a volume V at temperature T. The hamiltonian reads $H=K+\Phi$ with kinetic energy $K=\sum_{i=1}^{N} \mathbf{p}_{i}^{2} / 2 m$ and potential energy $\Phi=\sum_{i<j}^{N} \phi\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)$ with a radially symmetric pair potential $\phi(r)$. The two-body correlation function is defined as $\rho^{(2)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\left\langle\sum_{i=1}^{N} \sum_{j \neq i}^{N} \delta\left(\mathbf{r}-\mathbf{r}_{i}\right) \delta\left(\mathbf{r}^{\prime}-\mathbf{r}_{j}\right)\right\rangle$ with the angular brackets denoting a thermal average in the canonical ensemble.
(a) For the case that $\phi(r) \equiv 0$, calculate the canonical partition function, the internal energy $\langle H\rangle$, the pressure, the chemical potential, and the entropy.
(b) Give arguments why we can write $\rho^{(2)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\rho^{2} g\left(\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\right)$ with $\rho=N / V$ the homogeneous density, and show for arbitrary $\phi(r)$ that $\langle\Phi\rangle=2 \pi V \rho^{2} \int_{0}^{\infty} r^{2} g(r) \phi(r) d r$.
(c) For the case of a hard-sphere fluid with particle diameter σ and packing fraction $\eta=(\pi / 6) \rho \sigma^{3}$, sketch $g(r)$ for $0<r<5 \sigma$ for (i) $\eta=0.01$ and (ii) $\eta=0.49$, of course with units on both axes. Calculate $\langle\Phi\rangle$ for both cases.
We now assume that the fluid is a square-well fluid with $\phi(r)=\infty$ for $0<r \leq \sigma, \phi(r)=$ $-\epsilon<0$ for $\sigma<r \leq 2 \sigma$, and $\phi(r)=0$ for $r>2 \sigma$. The Helmholtz free energy of this fluid is denoted by $F(N, V, T)$.
(d) Calculate the second virial coefficient $B_{2}(T)$ of this square-well fluid.
(e) Show that $F(N, V, T)=F_{H S}(N, V, T)+\Delta F(N, V, T)$ with $F_{H S}$ the hard-sphere free energy and $\Delta F=-2 \pi \epsilon V \rho^{2} \int_{\sigma}^{2 \sigma} d r r^{2} \int_{0}^{1} d \lambda g_{\lambda}(r)$ with $g_{\lambda}(r)$ the radial distribution function in a square-well system with well-depth $-\lambda \epsilon$.
(f) Show within first-order perturbation theory that $F / V=F_{H S} / V-a \rho^{2}$, give an expression for a, and argue on this basis whether or not you expect the homogeneous fluid phase at a density $\rho=0.4 \sigma^{-3}$ to be stable at all T. Give arguments for your answer.
Problem 4 The radius of gyration R_{g} of a single polymer of $N \gg 1$ beads and contour length $N b$ in a good solvent satisfies to a good approximation $R_{g}=b N^{3 / 5}$. The (osmotic) pressure Π of a solution of M of these polymers in a volume V, so with monomer volume fraction $\phi=M N b^{3} / V$, can be written as $b^{3} \Pi / k_{B} T=(\phi / N) f\left(\phi / \phi^{*}\right)$ with $f(x)$ to be determined.
(a) Explain in a few words (i) how R_{g} compares to that of a single ideal polymer and (ii) how R_{g} gives rise to the monomer overlap volume fraction $\phi^{*}=N^{-4 / 5}$.
(b) Show that $f(x)=1+c x$ (with c an order-unity number) in the dilute regime $(x \ll 1$), and give a DeGennes-type scaling argument why $f(x)=x^{m}$ for $x \gg 1$ in the semidilute regime ($\phi^{*} \ll \phi \ll 1$); determine m and the scaling of Π with ϕ in the latter regime.
Dispersions of colloidal spheres of radius a exhibit Brownian motion.
(c) Show that the typical time t_{D} for a colloid to diffuse over a distance of the order of its own size scales, in a dilute dispersion, as $t_{D} \propto a^{3}$. Briefly describe two experimental techniques to study this Brownian motion for $a=1 \mu \mathrm{~m}$.
(d) Briefly describe the three ingredients of the DLVO-potential between a pair of colloidal particles in an aqueous NaCl solution, and sketch this potential for a salt concentration of (i) 1 mM and (ii) 1 M .

