Algebraic Number Theory - January 17, 2019

Problem 1.

For the field $K=\mathbb{Q}(\sqrt{61})$ give the ring of integers \mathcal{O}_{K}, the class group of \mathcal{O}_{K}, and a unit of infinite order in \mathcal{O}_{K}.

Problem 2.

Let ζ be a primitive 7 th root of unity, let $\eta=\zeta+\zeta^{-1}$, and let $K=\mathbb{Q}(\eta)$.
(a) Find the minimal polynomial of η.
(b) Prove that the discriminant of $\mathbb{Z}[\eta]$ is 49 .
(c) Show that $\mathcal{O}_{K}=\mathbb{Z}[\eta]$.
(d) Show that the class group of K is trivial.

Problem 3.

Let R be the ring $\mathbb{Z}[\sqrt{2}, \sqrt{3}]$.
(a) Show that R has a unique prime ideal \mathfrak{p} such that the index $[R: \mathfrak{p}]$ is a power of 2 .
(b) Show that $[R: \mathfrak{p}]=2$ and that $\left[\mathfrak{p}: \mathfrak{p}^{2}\right]=4$.
(c) Show that \mathfrak{p} is a singular prime of R.
(d) Give an element of the integral closure of R that does not lie in R.

Problem 4.

(a) Show that the polynomial $f=X^{3}+7$ is irreducible in $\mathbb{Q}[X]$.
(b) Let K be the number field $\mathbb{Q}[X] /(f)$. Find the ring of integers O_{K} of K.
(c) Determine the class group of K.

