Algebraic Number Theory — January 17, 2019

Problem 1.

For the field $K = \mathbb{Q}(\sqrt{61})$ give the ring of integers \mathcal{O}_K , the class group of \mathcal{O}_K , and a unit of infinite order in \mathcal{O}_K .

Problem 2.

Let ζ be a primitive 7th root of unity, let $\eta = \zeta + \zeta^{-1}$, and let $K = \mathbb{Q}(\eta)$.

- (a) Find the minimal polynomial of η .
- (b) Prove that the discriminant of $\mathbb{Z}[\eta]$ is 49.
- (c) Show that $\mathcal{O}_K = \mathbb{Z}[\eta]$.
- (d) Show that the class group of K is trivial.

Problem 3.

Let R be the ring $\mathbb{Z}[\sqrt{2}, \sqrt{3}]$.

- (a) Show that R has a unique prime ideal \mathfrak{p} such that the index $[R : \mathfrak{p}]$ is a power of 2.
- (b) Show that $[R : \mathfrak{p}] = 2$ and that $[\mathfrak{p} : \mathfrak{p}^2] = 4$.
- (c) Show that \mathfrak{p} is a singular prime of R.
- (d) Give an element of the integral closure of R that does not lie in R.

Problem 4.

- (a) Show that the polynomial $f = X^3 + 7$ is irreducible in $\mathbb{Q}[X]$.
- (b) Let K be the number field $\mathbb{Q}[X]/(f)$. Find the ring of integers O_K of K.
- (c) Determine the class group of K.