Mathematisch Instituut

Brownian Motion and Financial Mathematics: Solution Final 2015-16

(1) Let $\{W(t) : t \ge 0\}$ be Brownian motion. Compute $\int_0^t \sin(W(s)) dW(s)$, and express your answer in the form $\int_0^t h(W(s)) ds + g(W(t))$, for explicit deterministic functions h and g. (1.5 pts)

Proof: Let $f(x) = \cos(x)$, then f is continuously differentiable, with $f'(x) = -\sin(x)$ and $f''(x) = -\cos(x)$. By Ito's Lemma, we have

$$\cos(W(t)) = \cos(W(0)) - \int_0^t \sin(W(s)) \, dW(s) - \int_0^t \frac{1}{2} \cos(W(s)) \, ds.$$

Since $\cos(W(0)) = 1$, we have

$$\int_0^t \sin(W(s)) \, dW(s) = 1 - \cos(W(t)) - \int_0^t \frac{1}{2} \cos(W(s)) \, ds.$$

The result follows with $f(x) = 1 - \cos(x)$ and $g(x) = -\cos(x)$.

(2) The evolution of a stock price S(t) is modeled by

$$S(t) = e^{\mu t + \sigma W(t)}.$$

where W(t) is a standard Brownian motion with filtration $\{\mathcal{F}(t): t \geq 0\}$, and μ and $\sigma > 0$ are real parameters. Assume that the initial value of the stock is S(0) = 1.

- (a) Determine an expression for $P(S(t) \le x)$, for $x \ge 0$. (0.5 pts)
- (b) Derive expressions for the median, and expectation of S(t). Note that the median is the value m such that $P(S(t) \le m) = 1/2$. (1 pt)
- (c) Determine an expression for the conditional expectation $E[S(t) | \mathcal{F}(s)]$ with s < t. Find conditions on μ and σ under which the price process $\{S(t) : t \geq 0\}$ is a martingale with respect to the filtration $\{\mathcal{F}(t) : t \geq 0\}$. (1 pt)

Proof (a): Note that W(t) is normally distributed with mean 0 and variance t, hence the random variable $Z(t) = \frac{W(t)}{\sqrt{t}}$ is standard normal. Now,

$$P(S(t) \le x) = P(e^{\mu t + \sigma W(t)} \le x) = P(W(t) \le \frac{\ln x - \mu t}{\sigma}) = P(Z(t) \le \frac{\ln x - \mu t}{\sigma\sqrt{t}}) = N(\frac{\ln x - \mu t}{\sigma\sqrt{t}}),$$

where N denotes the standard normal distribution function.

Proof (b): We are looking for the value of *m* such that

$$P(S(t) \le m) = P(Z(t) \le \frac{\ln m - \mu t}{\sigma \sqrt{t}}) = 1/2.$$

Since Z(t) is a symmetric standard normal random variable, the median of Z(t) is 0. This implies that $\frac{\ln m - \mu t}{\sigma \sqrt{t}} = 0$ leading to $m = e^{\mu t}$. To calculate the expectation of S(t), we first note that the moment generating function of the standard normal random variable Z(t) satisfies $E(e^{sZ(t)}) = e^{\frac{1}{2}s^2}$. Now

$$E(S(t)) = E(e^{\mu t + \sigma W(t)}) = e^{\mu t} E(e^{\sigma \sqrt{t}Z(t)}) = e^{\mu t} e^{\frac{1}{2}\sigma^2 t} = e^{t(\mu + \frac{1}{2}\sigma^2)}.$$

Proof (c): For s < t we have, $S(t) = S(s)e^{\mu(t-s)+\sigma(W(t)-W(s))}$. Furthermore, S(s) is $\mathcal{F}(s)$ -measurable, and W(t) - W(s) is independent of $\mathcal{F}(s)$. Thus,

$$E(S(t) | \mathcal{F}(s)) = S(s)e^{\mu(t-s)}E(e^{\sigma(W(t)-W(s))}) = S(s)e^{(\mu+\frac{1}{2}\sigma^2)(t-s)},$$

the last equality follows from the moment generating function of the normally distributed random variable W(t) - W(s). For the process S(t) to be a martingale, we must have $E(S(t) | \mathcal{F}(s)) = S(s)$ for s < t. This leads to $e^{(\mu + \frac{1}{2}\sigma^2)(t-s)} = 1$ or equivalently, $\mu = -\frac{1}{2}\sigma^2$.

(3) Let $\{B_1(t): t \ge 0\}$ and $\{B_2(t): t \ge 0\}$ be a pair of correlated Brownian motions with

 $dB_1(t)dB_2(t) = \rho(t)dt,$

with $\{\rho(t) : t \ge 0\}$ a stochastic process taking values in [-1, 1] which is adapted to the filtration $\{\mathcal{F}(t) : t \ge 0\}$ generated by the Brownian motions $B_1(t)$ and $B_2(t)$. Define two processes $W_1(t)$ and $W_2(t)$ by

and

$$dW_1(t) = dB_1(t),$$

$$W_2(t) = \alpha(t)dB_1(t) + \beta(t)dB_2(t),$$

with $\{\alpha(t) : t \ge 0\}$ and $\{\beta(t) : t \ge 0\}$ adapted processes, and $\beta(t) \ge 0$ for $t \ge 0$. Find the values of $\alpha(t)$, $\beta(t)$ such that the random process $\{(W_1(t), W_2(t)) : t \ge 0\}$ is a 2-dimensional Brownian motion. (2 pts)

Proof: We use Levy characterization of a two-dimensional Brownian motion (Theorem 4.6.5). By definition of $W_1(t)$ and $W_2(t)$, it follows directly that $W_1(t)$ is a Brownian motion and $W_2(t)$ is a martingale with continuous paths and $W_2(0) = 0$. It remains to find the values of $\alpha(t)$ and $\beta(t)$ such that the quadratic variation of $W_2(t)$ is t which will imply that $\{W_2(t) : t \ge 0\}$ is a Brownian motion, and the cross-variation of $W_1(t)$ and $W_2(t)$ is zero which implies that $W_1(t)$ and $W_2(t)$ are independent. Thus, we want

$$dW_{2}(t)dW_{2}(t) = (\alpha^{2}(t) + \beta^{2}(t) + 2\rho(t)\alpha(t)\beta(t))dt = dt,$$

and

$$dW_1(t)dW_2(t) = (\alpha(t) + \beta(t)\rho(t))dt = 0.$$

These lead to the system

$$\alpha^2(t) + \beta^2(t) + 2\rho(t)\alpha(t)\beta(t) = 1,$$

and

Sol

$$\alpha(t) + \beta(t)\rho(t) = 0.$$

ving we get $\beta(t) = \frac{1}{\sqrt{1 - \rho^2(t)}}$, and $\alpha(t) = \frac{-\rho(t)}{\sqrt{1 - \rho^2(t)}}$.

(4) Suppose that the stock price S(t) is a geometric Browninan motion, i.e.

$$dS(t) = \alpha S(t) \, dt + \sigma S(t) \, dW(t),$$

where W(t) is a Brownian motion on a probability space (Ω, \mathcal{F}, P) with filtration $\{\mathcal{F}(t) : t \ge 0\}$. Let r be the interest rate, and $\theta = \frac{\alpha - r}{\sigma}$. Consider the process

$$Z(t) = e^{-\theta W(t) - (r + \frac{1}{2}\theta^2)t}.$$

(a) Show that

$$dZ(t) = -\theta Z(t) \, dW(t) - rZ(t) \, dt$$

(0.5 pts)

(b) Consider the portfolio process $X(t) = \Delta(t)S(t) + (X(t) - \Delta(t)S(t))$. Show that $\{Z(t)X(t) : t \ge 0\}$ is a martingale with respect to the filtration $\{\mathcal{F}(t) : t \ge 0\}$. (1 pt)

(c) Let T > 0 be a fixed terminal time, and assume $\mathcal{F} = \mathcal{F}(T)$. Let V(T) be an $\mathcal{F}(T)$ -measurable function (thought of as the payoff of a derivative with expiration date T). Show that if an investor wants to begin with some initial value X(0) and invests in order to have a portfolio with value V(T) at time T, then he must begin with initial capital X(0) = E[Z(T)V(T)]. (0.5 pts)

Proof (a): We apply Ito-Doeblin's formula to the function $f(t,x) = e^{-\theta x - (r + \frac{1}{2}\theta^2)t}$. Note that $f_t(t,x) = -(r + \frac{1}{2}\theta^2)f(t,x), f_x(t,x) = -\theta f(t,x)$ and $f_{xx}(t,x) = \theta^2 f(t,x)$. Now,

$$dZ(t) = d(f(t, W(t))) = -(r + \frac{1}{2}\theta^2)Z(t)dt - \theta Z(t)dW(t) + \frac{1}{2}\theta^2 dt = -rZ(t)dt - \theta Z(t)dW(t).$$

Proof (b): It suffices to show that Z(t)X(t) is an Ito-integral. We know that the underlying stochastic differential equation of X(t) is given by

 $dX(t) = \Delta(t)dS(t) + r(X(t) - \Delta(t)S(t))d(t).$

Replacing $dS(t) = \alpha S(t) dt + \sigma S(t) dW(t)$ we get

$$dX(t) = rX(t)dt + \Delta(t)(\alpha - r)S(t)dt + \Delta(t)\sigma S(t)dW(t).$$

We now apply Ito's product rule, we have

$$d(Z(t)X(t)) = Z(t)dX(t) + X(t)dZ(t) + dX(t)dZ(t).$$

Using the equalities $dZ(t) = -rZ(t)dt - \theta Z(t)dW(t)$, $dX(t) = rX(t)dt + \Delta(t)(\alpha - r)S(t)dt + \Delta(t)\sigma S(t)dW(t)$ and $\sigma\theta = \alpha - r$ we get

$$d(Z(t)X(t)) = \left(\Delta(t)\sigma S(t)Z(t) - \theta X(t)Z(t)\right)dW(t)$$

This implies that Z(t)X(t) is an Ito-integral and hence a martingale.

Proof (c): Our portfolio should satisfy X(T) = V(T) and hence Z(T)X(T) = Z(T)V(T). By part (b), $\{Z(t)X(t)\}$ is a martingale, hence

$$X(0) = Z(0)X(0) = E(Z(T)X(T)) = E(Z(T)V(T))$$

(5) Let $\{W(t): 0 \le t \le T\}$ be a Brownian motion on a probability space (Ω, \mathcal{F}, P) , and let $\{\mathcal{F}(t): 0 \le t \le T\}$ be the filtration generated by the Brownian motion. Let $\{\Theta(t): 0 \le t \le T\}$ be a bounded adapted process. Use Girsanov's Theorem as well as the Martingale Representation Theorem to show that if Y is an $\mathcal{F}(T)$ measurable function, then there exist a constant x and an adapted process $\{\alpha(t): 0 \le t \le T\}$ such that

$$Y = x + \int_0^T \alpha(t)\Theta(t)dt + \int_0^T \alpha(t)dW(t).$$

(2 pts)

Proof: Let $Z(t) = e^{-\int_0^T \Theta(u)dW(u) - \frac{1}{2}\int_0^t \Theta^2(u)du}$, and $\widetilde{W}(t) = W(t) + \int_0^t \Theta(u)du$. Consider measure \widetilde{P} satisfying $d\widetilde{P} = Z(T)dP$. Since the process $\{\Theta(t) : 0 \le t \le T\}$ is bounded, then $E\left(\int_0^T \Theta^2(u)Z^2(u)\,du\right) < \infty$ as well as $\widetilde{E}\left(\int_0^T \Theta^2(u)Z^2(u)\,du\right) < \infty$, by Girsanov's Theorem (in fact Corollary 5.3.2), $\{\widetilde{W}(t) : 0 \le t \le T\}$ is a Brownian motion under the measure \widetilde{P} . Now, let Y be an $\mathcal{F}(T)$ measurable function, and define $X(t) = \widetilde{E}(Y \mid \mathcal{F}(t))$ for $0 \le t \le T$. Then, $\{X(t) : 0 \le t \le T\}$ is a martingale under the measure \widetilde{P} . Since Y is an $\mathcal{F}(T)$ measurable, we have $X(T) = \widetilde{E}(Y \mid \mathcal{F}(T)) = Y$. By the Martingale Representation Theorem, there exists an adapted process $\{\alpha(t) : 0 \le t \le T\}$ such that

$$X(t) = X(0) + \int_0^t \alpha(u)d\widetilde{W}(u) = X(0) + \int_0^t \alpha(u)\Theta(u)du + \int_0^t \alpha(u)dW(u), \ 0 \le t \le T.$$

Now set x = X(0), since Y = X(T), we have

$$Y = x + \int_0^T \alpha(t)\Theta(t)dt + \int_0^T \alpha(t)dW(t).$$