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(1) Let {W (t) : t ≥ 0} be Brownian motion. Compute
∫ t

0
sin(W (s)) dW (s), and express your answer

in the form
∫ t

0
h(W (s)) ds+ g(W (t)), for explicit deterministic functions h and g. (1.5 pts)

Proof: Let f(x) = cos(x), then f is continuously differentiable, with f ′(x) = − sin(x) and
f ′′(x) = − cos(x). By Ito’s Lemma, we have

cos(W (t)) = cos(W (0))−
∫ t

0

sin(W (s)) dW (s)−
∫ t

0

1

2
cos(W (s)) ds.

Since cos(W (0)) = 1, we have∫ t

0

sin(W (s)) dW (s) = 1− cos(W (t))−
∫ t

0

1

2
cos(W (s)) ds.

The result follows with f(x) = 1− cos(x) and g(x) = − cos(x).

(2) The evolution of a stock price S(t) is modeled by

S(t) = eµt+σW (t),

where W (t) is a standard Brownian motion with filtration {F(t) : t ≥ 0}, and µ and σ > 0 are
real parameters. Assume that the initial value of the stock is S(0) = 1.

(a) Determine an expression for P (S(t) ≤ x), for x ≥ 0. (0.5 pts)

(b) Derive expressions for the median, and expectation of S(t). Note that the median is the
value m such that P (S(t) ≤ m) = 1/2. (1 pt)

(c) Determine an expression for the conditional expectation E[S(t) | F(s)] with s < t. Find
conditions on µ and σ under which the price process {S(t) : t ≥ 0} is a martingale with
respect to the filtration {F(t) : t ≥ 0}. (1 pt)

Proof (a): Note that W (t) is normally distributed with mean 0 and variance t, hence the random

variable Z(t) =
W (t)√

t
is standard normal. Now,

P (S(t) ≤ x) = P (eµt+σW (t) ≤ x) = P (W (t) ≤ lnx− µt
σ

) = P (Z(t) ≤ lnx− µt
σ
√
t

) = N(
lnx− µt
σ
√
t

),

where N denotes the standard normal distribution function.

Proof (b): We are looking for the value of m such that

P (S(t) ≤ m) = P (Z(t) ≤ lnm− µt
σ
√
t

) = 1/2.

Since Z(t) is a symmetric standard normal random variable, the median of Z(t) is 0. This

implies that
lnm− µt
σ
√
t

= 0 leading to m = eµt. To calculate the expectation of S(t), we first

note that the moment generating function of the standard normal random variable Z(t) satisfies

E(esZ(t)) = e
1
2 s

2

. Now

E(S(t)) = E(eµt+σW (t)) = eµtE(eσ
√
tZ(t)) = eµte

1
2σ

2t = et(µ+ 1
2σ

2).
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Proof (c): For s < t we have, S(t) = S(s)eµ(t−s)+σ(W (t)−W (s)). Furthermore, S(s) is F(s)-
measurable, and W (t)−W (s) is independent of F(s). Thus,

E(S(t) | F(s)) = S(s)eµ(t−s)E(eσ(W (t)−W (s))) = S(s)e(µ+ 1
2σ

2)(t−s),

the last equality follows from the moment generating function of the normally distributed random
variable W (t)−W (s). For the process S(t) to be a martingale, we must have E(S(t) | F(s)) = S(s)

for s < t. This leads to e(µ+ 1
2σ

2)(t−s) = 1 or equivalently, µ = − 1
2σ

2.

(3) Let {B1(t) : t ≥ 0} and {B2(t) : t ≥ 0} be a pair of correlated Brownian motions with

dB1(t)dB2(t) = ρ(t)dt,

with {ρ(t) : t ≥ 0} a stochastic process taking values in [−1, 1] which is adapted to the filtration
{F(t) : t ≥ 0} generated by the Brownian motions B1(t) and B2(t). Define two processes W1(t)
and W2(t) by

dW1(t) = dB1(t),

and

dW2(t) = α(t)dB1(t) + β(t)dB2(t),

with {α(t) : t ≥ 0} and {β(t) : t ≥ 0} adapted processes, and β(t) ≥ 0 for t ≥ 0. Find the values
of α(t), β(t) such that the random process {(W1(t),W2(t)) : t ≥ 0} is a 2-dimensional Brownian
motion. (2 pts)

Proof: We use Levy characterization of a two-dimensional Brownian motion (Theorem 4.6.5).
By definition of W1(t) and W2(t), it follows directly that W1(t) is a Brownian motion and W2(t)
is a martingale with continuous paths and W2(0) = 0. It remains to find the values of α(t) and
β(t) such that the quadratic variation of W2(t) is t which will imply that {W2(t) : t ≥ 0} is a
Brownian motion, and the cross-variation of W1(t) and W2(t) is zero which implies that W1(t)
and W2(t) are independent. Thus, we want

dW2(t)dW2(t) = (α2(t) + β2(t) + 2ρ(t)α(t)β(t))dt = dt,

and

dW1(t)dW2(t) = (α(t) + β(t)ρ(t))dt = 0.

These lead to the system

α2(t) + β2(t) + 2ρ(t)α(t)β(t) = 1,

and

α(t) + β(t)ρ(t) = 0.

Solving we get β(t) =
1√

1− ρ2(t)
, and α(t) =

−ρ(t)√
1− ρ2(t)

.

(4) Suppose that the stock price S(t) is a geometric Browninan motion, i.e.

dS(t) = αS(t) dt+ σS(t) dW (t),

where W (t) is a Brownian motion on a probability space (Ω,F , P ) with filtration {F(t) : t ≥ 0}.
Let r be the interest rate, and θ =

α− r
σ

. Consider the process

Z(t) = e−θW (t)−(r+ 1
2 θ

2)t.

(a) Show that

dZ(t) = −θZ(t) dW (t)− rZ(t) dt.

(0.5 pts)

(b) Consider the portfolio process X(t) = ∆(t)S(t) + (X(t)−∆(t)S(t)). Show that {Z(t)X(t) :
t ≥ 0} is a martingale with respect to the filtration {F(t) : t ≥ 0}. (1 pt)
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(c) Let T > 0 be a fixed terminal time, and assume F = F(T ). Let V (T ) be an F(T )-measurable
function (thought of as the payoff of a derivative with expiration date T ). Show that if an
investor wants to begin with some initial value X(0) and invests in order to have a portfolio
with value V (T ) at time T , then he must begin with initial capital X(0) = E[Z(T )V (T )].
(0.5 pts)

Proof (a): We apply Ito-Doeblin’s formula to the function f(t, x) = e−θx−(r+ 1
2 θ

2)t. Note that
ft(t, x) = −(r + 1

2θ
2)f(t, x), fx(t, x) = −θf(t, x) and fxx(t, x) = θ2f(t, x). Now,

dZ(t) = d(f(t,W (t)) = −(r +
1

2
θ2)Z(t)dt− θZ(t)dW (t) +

1

2
θ2dt = −rZ(t)dt− θZ(t)dW (t).

Proof (b): It suffices to show that Z(t)X(t) is an Ito-integral. We know that the underlying
stochastic differential equation of X(t) is given by

dX(t) = ∆(t)dS(t) + r(X(t)−∆(t)S(t))d(t).

Replacing dS(t) = αS(t) dt+ σS(t) dW (t) we get

dX(t) = rX(t)dt+ ∆(t)(α− r)S(t)dt+ ∆(t)σS(t)dW (t).

We now apply Ito’s product rule, we have

d(Z(t)X(t)) = Z(t)dX(t) +X(t)dZ(t) + dX(t)dZ(t).

Using the equalities dZ(t) = −rZ(t)dt − θZ(t)dW (t), dX(t) = rX(t)dt + ∆(t)(α − r)S(t)dt +
∆(t)σS(t)dW (t) and σθ = α− r we get

d(Z(t)X(t)) =

(
∆(t)σS(t)Z(t)− θX(t)Z(t)

)
dW (t).

This implies that Z(t)X(t) is an Ito-integral and hence a martingale.

Proof (c): Our portfolio should satisfy X(T ) = V (T ) and hence Z(T )X(T ) = Z(T )V (T ). By
part (b), {Z(t)X(t)} is a martingale, hence

X(0) = Z(0)X(0) = E(Z(T )X(T )) = E(Z(T )V (T )).

(5) Let {W (t) : 0 ≤ t ≤ T} be a Brownian motion on a probability space (Ω,F , P ), and let {F(t) :
0 ≤ t ≤ T} be the filtration generated by the Brownian motion. Let {Θ(t) : 0 ≤ t ≤ T} be
a bounded adapted process. Use Girsanov’s Theorem as well as the Martingale Representation
Theorem to show that if Y is an F(T ) measurable function, then there exist a constant x and an
adapted process {α(t) : 0 ≤ t ≤ T} such that

Y = x+

∫ T

0

α(t)Θ(t)dt+

∫ T

0

α(t)dW (t).

(2 pts)

Proof : Let Z(t) = e−
∫ T
0

Θ(u)dW (u)− 1
2

∫ t
0

Θ2(u)du, and W̃ (t) = W (t) +
∫ t

0
Θ(u)du. Consider

measure P̃ satisfying dP̃ = Z(T )dP . Since the process {Θ(t) : 0 ≤ t ≤ T} is bounded, then

E

(∫ T
0

Θ2(u)Z2(u) du

)
< ∞ as well as Ẽ

(∫ T
0

Θ2(u)Z2(u) du

)
< ∞, by Girsanov’s Theorem

(in fact Corollary 5.3.2), {W̃ (t) : 0 ≤ t ≤ T} is a Brownian motion under the measure P̃ . Now,

let Y be an F(T ) measurable function, and define X(t) = Ẽ(Y | F(t)) for 0 ≤ t ≤ T . Then,

{X(t) : 0 ≤ t ≤ T} is a martingale under the measure P̃ . Since Y is an F(T ) measurable, we

have X(T ) = Ẽ(Y | F(T )) = Y . By the Martingale Representation Theorem, there exists an
adapted process {α(t) : 0 ≤ t ≤ T} such that

X(t) = X(0) +

∫ t

0

α(u)dW̃ (u) = X(0) +

∫ t

0

α(u)Θ(u)du+

∫ t

0

α(u)dW (u), 0 ≤ t ≤ T.

Now set x = X(0), since Y = X(T ), we have

Y = x+

∫ T

0

α(t)Θ(t)dt+

∫ T

0

α(t)dW (t).


