
Exam ”Wave Attractors”

27 June 2018, 13:30-16:30

No books or lecture notes allowed. Computations can all use rounded estimates. Weight

of question is indicated in points (pt) - 34 points in total.

Loch Ness

Loch Ness is a fresh water lake in Scotland, centered at 57o2′N and 4o35′W . The lake is

approximately 37 km long, 2 km wide and 200 m deep. It is a geological fault, filled in with

sediments giving the Loch a nearly symmetric, trapezoidal cross-sectional shape (see figure).

Its sidewalls both slope over a distance of approximately 0.5 km. For our purpose the Loch

may serve as a ”mini-ocean”.

In summer, the water of the lake is linearly stratified in temperature, varying from 5o C at

the bottom (density ρb ≈ 1000 kg m−3), to 16o C at the top (ρt ≈ 999 kg m−3).

1 (2pt) Compute an approximate value for the stability (buoyancy) frequency, N , and assume

it to be constant throughout the basin.

A finite difference approximation based on the bottom and surface density, using the classical

definition of stability frequency, reads

N ≈
(
− g

ρ∗

dρ0
dz

)1/2

≈
(

10× 1

1000× 200

)1/2

rad s−1 ≈ (50× 10−6)1/2rad s−1 ≈ 7× 10−3rad s−1

2 (1pt) Knowing that the speed of sound cs is approximately 1500m/s, determine whether it

is relevant to take compressibility of water into account?

This classical definition has to be corrected for compressibility effects. Using a more correct

definition of

N2 = − g

ρ∗

dρ0
dz
−
(
g

cs

)2

,
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Figure 1: Transverse profile of the bathymetry of Loch Ness. At the surface, the Loch is 2

km wide. Model the sloping side walls as being 0.5 km wide each.

the correction

−
(
g

cs

)2

≈ −
(

10

1500

)2

≈ −44× 10−6rad2 s−2.

This yields a substantial correction, and shows a better estimate of N ≈ 2.5 × 10−3rad s−1.

3 (4pt) In a Cartesian x, y, z frame of reference with velocity vector u, v, w, perturbation

pressure p = (p∗ − p0)/ρ∗ and perturbation buoyancy b = −gρ′/ρ∗, related to perturbation

density ρ′ scaled with uniform reference density ρ∗, the linearized, inviscid equations gov-

erning perturbations (internal waves of frequency ω) of this uniformly-stratified fluid are, in

Boussinesq-approximation, given by:

ut = −px

vt = −py

wt = −pz + b

bt + wN2 = 0

ux + vy + wz = 0.

Here subscript-derivative notation is used, z points antiparallel to gravity and x and y point

in the along and across Loch directions respectively.
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Derive the equation that governs the spatial structure for free internal waves propagating

strictly in the transverse (y, z) plane.

Using ∂x = 0 and thus u = 0, waves are determined by adding cross-derivatives of the time-

derivatives of the two remaining momentum equations and then using the buoyancy equation

to eliminate buoyancy derivative bt. This leads to

vztt − wytt −N2wy = 0.

Introducing a streamfunction v = ψz, w = −ψy, this equation simplifies to

∂2

∂t2
(ψzz + ψyy) +N2ψyy = 0.

4 (1pt) Consider monochromatic, plane waves and show that the buoyancy frequency acts as

a high-frequency cut-off.

Consider ψ ∝ ei(ly+mz−ωt), with wave vector k = (l,m) = κ(cosα, sinα). Then, these waves

need to satisfy

ω2 = N2 l2

l2 +m2
= N2 cos2 α.

For real wave numbers (l,m), the frequency is thus limited by ω ≤ N .

5 (1pt) What happens to perturbations of frequency higher than this cut-off?

For waves of frequency ω > N , one of the wave numbers needs to be imaginary, and hence,

is trapped to a boundary. Given that only the surface is free and can support waves, this

boundary needs to be the surface, hence m = iM (for M real).

6 (2pt) What boundary conditions do these waves need to satisfy on the rigid sloping walls,

bottom and free surface?

The solid walls need to be impenetrable u · n = 0, where n denotes a unit vector normal. to

the boundary. This translates to a requirement that ψ = constant at these walls. At the free

surface, z = ζ(y, t), in linear description the kinematic boundary condition reads w = ζt. This

has to be combined with the dynamic boundary condition which (for this scaled pressure)

reads p = gζ. Using the horizontal momentum equation to eliminate the pressure, leads to

ψztt = −gψyy. Using scales

[y, z, t] = [L,H, ω−1],

where y = [y]y′ etc, this equation can for monochromatic waves of frequency ω, dropping

primes, be simplified to

−εψz + ψyy = 0, ε ≡ (Lω)2

gH
< 0.1,
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taking scales L = 2km, ω < N = 5 × 10−3 rad s−1, H = 200 m. Hence we approximate

the surface boundary condition by ψy = w = constant. For reasons of continuity at the two

sides, that constant has to be taken equal to zero, so that ψ = 0 also at the surface (rigid-lid

approximation).

7 (1pt) Discuss the scaling by means of which the spatial structure of monochromatic internal

waves propagating in cross-Loch direction is governed by the dimensionless equation

ψyy − ψzz = 0,

in terms of the stream function field ψ(y, z).

Scaling the horizontal coordinate y = Ly′ by half-width L (= 1 km), and the vertical coordi-

nate z = Dz′ by scale height

D = L

(
N2

ω2
− 1

)−1/2
,

dropping primes, this leads to the required equation.

8 (1pt) In terms of these scaled variables, determine the location of the boundaries and

boundary conditions.

For y ∈ (−1/2, 1/2), the scaled, dimensionless bottom lies at

z = −τ = −H
D

= −H
L

(
N2

ω2
− 1

)1/2

,

the surface at z = 0, and the sloping walls at z = 2τ(y−1) for y ∈ (1/2, 1) and z = −2τ(1+y)

for y ∈ (−1,−1/2).

9 (1pt) Discuss why internal gravity waves that propagate in transverse y-direction would be

focused onto wave attractors.

The sloping walls lead to focusing reflections because wave beams, that follow the inclination

set by the dispersion relation, is fixed, hence these beams decrease their width when falling

onto a sloping wall from above. They increase their width due to defocusing, when incident

onto such a slope from below. The reason why focusing dominates over defocusing lies in the

fact that the cross-section of the former waves incident from above, is larger than that of the

latter.

10 (2pt) Compute the range of frequencies over which ’simple’ wave attractors exist, that is,

having two surface reflections and one reflection from each side wall (use graphs to support

your argument).(You get 0.5pt if you compute one frequency that falls within this range)
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The range of (2,1) attractors, having 2 surface reflections and 1 reflection from each side wall,

is on the one hand delimited by a characteristic web connecting a surface corner to the other

surface corner, and on the other hand by the two bottom corners connecting to each other.

This is equivalent to a characteristic from one corner reflecting either at the surface or bottom

center. In the former case, characteristic z = y − 1 through (1, 0) must thus cross (0,−τ), in

the latter case, characteristic z = −τ − (y − 1/2) through (1/2,−τ) must cross (0, 0). This

leads to τ = 1 and τ = 1/2 respectively, with a corresponding frequency range from τ(ω).

11 (1pt) Are there any transversely propagating internal waves that do not focus onto an

attractor?

Yes, for waves having an inclination such that a characteristic starting in a surface corner

point connects to a diagonally opposite bottom corner point. In this case, beams have the

same amount of defocusing reflections as focusing reflections from the sloping sides. In that

case the characteristic z = y − 1, passing through corner (1, 0), has to cross the diagonally

opposite corner (−1/2,−τ), which yields τ = 3/2. The frequency that corresponds to this

is given by ω = N/
√

1 + (3L/2H)2, where here L represents half-width, L = 1 km, so that

ω ≈ 0.13×N .

12 (1 pt) For internal waves that also propagate down-channel, give a qualitative argument

why internal gravity waves might still be trapped.

Internal wave beams then reflect from the sloping sides under an inclination with the y-

direction, this leads to focusing and amplification of the cross-channel part of the wave (both

of its velocity as well as the wave number), while the along-channel part does not change.

This creates refraction of the wave, which leads more and more to cross-channel propagation.

13 (2pt) In fall, due to wind mixing and sheared bottom currents the water is well-mixed

near surface and bottom, in the upper and lowest 75 m of the Loch. The temperature

jump between the cold bottom and warm surface layer is thus restricted to the middle 50

m. Discuss qualitatively in what way this affects the internal gravity waves within the whole

water column?

The internal waves can now propagate only within the stratified layer. It has evanescent tails

in the homogeneous top and bottom layers. The waves are still subject to focusing, but now

propagate with an effective reduced depth Heff = 50m instead of the actual 200 m depth.

14 (2pt) In winter, the entire water column is well-mixed, so that the Loch is homogeneous
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in density. Now consider that the Loch is on a rotating planet, rotating at angular velocity

Ω = 7.2 × 10−5rad/s. Why does the Loch still support internal waves, and what kind of

waves?

It supports inertial waves, restored by Coriolis forces. In fact, the slope also allows for

nondivergent Rossby waves.

15 (4pt) In traditional approximation, the equations governing these perturbations (waves)

are now given by

ut − fv = −px

vt + fu = −py

wt− = −pz

ux + vy + wz = 0,

where Coriolis frequency f = 2Ω sinφ.

Taking into account the small aspect ratio of the Loch (depth 200 m, width 2 km and length 37

km), use scaling to write down approximate equations governing linear surface wave motions

in this homogeneous-density fluid?

Use of the scales

[x, y, z, t, u, v, w, p] = [L,L,H, f−1, U, U, UH/L,UfL],

with x = [x]x′ etc and dropping primes afterwards, leads to:

ut − v = −px

vt + u = −py

δ2wt− = −pz

ux + vy + wz = 0,

where δ = H/L = 0.1� 1. Expanding each dependent variable in a perturbation series, e.g.

u = u(0)+δu(1)+· · · , and collecting terms to order zero in δ shows that the pressure and hence
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u, v must be z-independent. Hence, the continuity equation shows w = (z/H + 1)ζt, obeying

the kinematic boundary condition at the free surface and vanishing correctly at the bottom,

z = −H. Pressure scale UfL now equals the pressure scale due to free surface displacement,

gζ which reads g[w]/f = gHU/fL. This requires length scale, L, to be identical to the Rossby

deformation radius R =
√
gH/f . Nondimensionally this leads to p = ζ. Thus we obtain the

rotating shallow-water equations

ut − v = −ζx

vt + u = −ζy

ζt + ux + vy = 0,

16 (1pt) On what grounds can rotational effects on surface gravity waves be neglected?

This is based on the fact that rotational effects on surface gravity waves are relevant for waves

of scales larger than the Rossby deformation radius, R ≡
√
gH/f ≈

√
10× 200× 104 m ≈ 45

km, which is much larger than the width as well the length of the Loch.

17 (1pt) Now further idealize the cross-sectional shape of the Loch to a rectangle (of width

1.5 km) and assume the Loch to be infinitely long. Compute internal wave solutions for

this homogeneous-density rotating fluid, assuming these waves propagate in along-Loch x-

direction.

By cross-differentiation one shows all variables satisfy the same equation

L(u, v, w, p) = 0, where L = (∂xx + ∂yy + ∂zz)∂tt + ∂zz

Applying this to the transverse velocity, v, that is required to vanish at the sides, shows

v ∝ sin(mπy). The vertical dependence must be ∝ sin(mπy) and the along-Loch dependence

∝ ei(kx−ωt). Hence solutions have a transverse velocity field

v = V sin(mπy) sin(nπz) cos(kx− ωt),

while ω must satisfy the dispersion relation detailed in (18).

18 (2pt) What are the Loch’s transverse eigenfrequencies, if any? Can there be any attractors

in this case? Why, or why not?
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Inserting this into the governing equation shows

ω2 =
n2π2

k2 +m2π2 + n2π2
.

Yes, provided the non-traditional Coriolis term is also taken into account.

19 (2pt) What is the difference between inertial oscillations and inertial waves?

Inertial oscillations are non-propagating anticyclonic horizontal circular motions, having infi-

nite spatial scales and frequency ω = f . Inertial waves have finite wave length and are prop-

agating both horizontally as well as vertically, and exist over the frequency range ω ∈ (0, f).

They also perform circular motions, but in an inclined plane.

20 (2pt) Now assume stratification and rotation are both present. In a uniformly-stratified

(N = const), rotating fluid, in which rotation axis Ω is anti-parallel to the direction of gravity

g, plane monochromatic internal waves of frequency ω satisfy a dispersion relation given by

ω2 = N2 cos2 α+ f2 sin2 α =
N2k2 + f2m2

k2 +m2
,

where 2D wave vector k = (k,m) = κ(cosα, sinα).

Compute the phase and group velocity vectors of these waves and show that they are orthog-

onal to one another?

With

ω2 = N2 cos2 α+ f2 sin2 α = N2 l2

l2 +m2
+ f2

m2

l2 +m2

Phase velocity vector c = ω
κ2

k, and group velocity vector

cg = ∇kω =
1

2ω
∇kω

2 =
(N2 − F 2)km

ω(k2 +m2)2
(m,−k).

This is obviously orthogonal to the phase velocity vector as cg · c = 0.
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