Midterm exam Parallel Algorithms (WISM459) October 17, 2007

Each of the five questions is worth 10 points. Total time is 45 minutes.

Question 1

What is a BSP superstep?

Question 2

Give the syntax of the bsp_put primitive from the BSPlib communications library. Explain the use of the parameters.

Question 3

Let x be a given vector of length n, which is distributed by the cyclic distributions over p processors, with $n \bmod p=0$. Give an efficient BSP algorithm for processor $P(s)$ (in the notation we learned) for the computation of the sum $\sum_{i=0}^{n-1} x_{i}^{4}$. On output, every processor has to know the result. Analyse the BSP cost.

Question 4

Let p, n be positive integers, with $n \bmod p=0$. Define a permutation σ by $\sigma(i)=(i+51) \bmod n$, for $0 \leq i<n$. What is the exact communication cost of permuting a block distributed vector x by σ, i.e., assigning $y_{\sigma(i)}=x_{i}$? The length of the input and output vectors is n. The number of processors is p.

Question 5

Let x be an array of odd length $n=2 k+1$ containing numerical values x_{i}. Assume that all values are different. We want to find the median of the values, i.e., the array value x_{j} such that k array values are higher than x_{j} and k are lower. Our aim is to do this in parallel, using the block distribution. On output, every processor has to know the median. Give an efficient BSP algorithm for processor $P(s)$ for the median computation. Analyse the BSP cost; if necessary, make additional assumptions in your analysis.

