Wiskundige Technieken 3

NS-220B

Dr. Carolin Kreisbeck
Tjebbe Hepkema (TA)
Camilo Ulloa (TA)
Solange Schrijnder van Velzen (TA)

Final Exam

Name:

Student number:

Date: Thursday, November 9, 2017
Time: 9:00-12:00 (3 hours)
Room: OLYMPOS, HAL1

Instructions:

- Write your name, student number, and problem number on every page you hand in.
- Use a separate sheet for each problem.
- The use of textbooks, notes, calculators, cell phones, etc. is not allowed.
- Make sure that your answers are readable and understandable.
- Problems marked with * are bonus questions.

Total points: 48 (including bonus points)
Score:

1	2	3	4	5	Σ

Grade:

Problem 1.

a) Determine all eigenvalues and eigenvectors of the 2×2 matrix

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-5 & -1
\end{array}\right)
$$

b) Show that the matrix A is diagonalizable.
c) Use the results from a) and b) to find the solution $F: \mathbb{R} \rightarrow \mathbb{C}^{2}$ to

$$
\frac{d}{d t} F=A F
$$

that satisfies the initial condition $F(0)=\binom{0}{2}$.

Problem 2.

Consider the differential equation

$$
\begin{equation*}
f^{\prime \prime}+\left(2-4 x^{2}\right) f=0 \tag{1}
\end{equation*}
$$

for $f: \mathbb{R} \rightarrow \mathbb{R}$.
a) Assume that the power series function

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad x \in \mathbb{R},
$$

with $a_{n} \in \mathbb{R}$ solves (1). Plug this ansatz into (1) and derive a recurrence relation for the coefficients a_{n}.
Hint: Treat the zeroth and first order terms separately. Notice that solving the recurrence relation is not required.

Take $a_{0}=1$ and $a_{1}=0$.
b) Argue that $a_{n}=0$ for all odd positive integers n.

Regarding the even positive integers, you may use without proof that

$$
a_{n}=\frac{(-1)^{k}}{k!} \quad \text { for } n=2 k \text { with } k \in \mathbb{N} .
$$

c) Use a convergence test of your choice to prove that the power series $\sum_{n \geq 0} a_{n} x^{n}$ converges for all $x \in \mathbb{R}$.
d) Show that $f(x)=e^{-x^{2}}$ for all $x \in \mathbb{R}$ and verify that this function is actually a solution to (1).

Problem 3.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the 2-periodic function defined by

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { for } x \in(-1,0], \\
x & \text { for } x \in(0,1), \\
\frac{1}{2} & \text { for } x=1,
\end{array} \quad x \in(-1,1]\right.
$$

a) Visualize the graph of the function f by drawing at least two periods.
b) Determine the Fourier coefficients \hat{f}_{k} for all $k \in \mathbb{Z}$.
c) Argue why f can be expressed as a converging Fourier sine and cosine series, i.e.

$$
f(x)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos (k \pi x)+b_{k} \sin (k \pi x) \quad \text { for all } x \in \mathbb{R}
$$

with $a_{k}, b_{k} \in \mathbb{R}$, and determine all the coefficients a_{k} and b_{k}.
d)* Use the result from c) to find the value of the series

$$
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots
$$

Problem 4.

Consider the transport equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u+\frac{\partial}{\partial x} u=0 \quad \text { in } \mathbb{R} \times(0, \infty) \tag{2}
\end{equation*}
$$

along with the initial conditions

$$
\begin{equation*}
u(x, 0)=g(x) \quad \text { for } x \in \mathbb{R} \tag{3}
\end{equation*}
$$

where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a given function.
a) Let $g(x)=e^{2 x}$ for $x \in \mathbb{R}$. Use the separation of variables method to find a function $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ that satisfies (2) and (3).
b) Show that for all continuously differentiable functions g,

$$
\begin{equation*}
u(x, t)=g(x-t) \quad \text { with } x \in \mathbb{R} \text { and } t \in[0, \infty) \tag{4}
\end{equation*}
$$

solves the initial value problem (2)-(3).
c)* Assuming that $g(x)=\sin (x)$ for $x \in \mathbb{R}$, is it possible to derive the solution (4) in b) via a separation of variables approach?

Problem 5.

We consider the linear second order differential equation

$$
\begin{equation*}
v^{\prime \prime}+4 v^{\prime}+3 v=f \tag{5}
\end{equation*}
$$

for $v: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(t)= \begin{cases}2 & \text { if } 0<t<1 \\ 0 & \text { otherwise }\end{cases}
$$

Solve the differential equation by performing the following steps.
a) Apply the Fourier transformation \mathcal{F} to (5) and solve the resulting equation for $\mathcal{F} v=\hat{v}$. 3p
b) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(t)= \begin{cases}\frac{1}{2}\left(e^{-t}-e^{-3 t}\right) & \text { if } t \geq 0 \\ 0 & \text { if } t<0\end{cases}
$$

Find the Fourier transform $\mathcal{F} g=\hat{g}$ of g.
c) Calculate the convolution product $(f * g)(x)$ for all $x \in \mathbb{R}$.

Hint: Treat the cases $x \leq 0, x \in(0,1)$ and $x \geq 1$ separately.
d) Use the results from a), b) and c) to obtain a particular solution to (5).
e) Determine the general solution to the differential equation (5).

