Retake Exam: Inleiding Financiele Wiskunde 2019-2020

- (1) Let $\{W(t): 0 \le t \le T\}$ be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\{\mathcal{F}(t): 0 \le t \le T\}$ be its natural filtration, and assume $\mathcal{F} = \mathcal{F}(T)$. Let c(t) be a deterministic function with c(0) = 0. Let r be a given interest rate and consider the price process $\{S(t): 0 \le t \le T\}$ given by $S(t) = e^{W(t) + c(t)}$.
 - (a) Find an expression for c(t) under which the discounted price process $\{e^{-rt}S(t): 0 \le t \le T\}$ is a martingale with respect to the probability measure \mathbb{P} . (1.5 pts)
 - (b) Consider the expression obtained in part (a), i.e. assume that the discounted price process $\{e^{-rt}S(t): 0 \le t \le T\}$ is a martingale under the probability measure \mathbb{P} . Consider a financial derivative with payoff at time T given by $V(T) = \mathbb{I}_{\{S(T) > K\}}$ (i.e. V(T) has value 1 if S(T) > K and 0 otherwise), here K is some given positive constant. Find the fair price of this option at time 0. (1.5 pts)
- (2) Let $\{W_1(t), W_2(t)\}$ is a two dimensional Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Consider the two processes $\{Z(t): t \geq 0\}$ and $\{B(t): t \geq 0\}$ defined by

$$Z(t) = 1 + e^{-W_1(t)} \int_0^t e^{W_1(u)} dW_2(u)$$

and

(1.5 pts)

$$B(t) = \int_0^t \frac{1}{\sqrt{1 + Z^2(u)}} dW_1(u) - \int_0^t \frac{Z(u)}{\sqrt{1 + Z^2(u)}} dW_2(u).$$

- (a) Use Lévy's characterization to prove that the process $\{B(t): t \geq 0\}$ is a one dimensional Brownian motion. (1 pt)
- (b) Prove that the process $\{Z(t): t \geq 0\}$ can be written as

$$Z(t) = 1 + W_2(t) - \int_0^t Z(u) dW_1(u) + \frac{1}{2} \int_0^t Z(u) ds.$$

- (c) Prove that $\mathbb{E}[Z(t)] = e^{\frac{1}{2}t}$, for $t \ge 0$. (1 pt)
- (3) Let $\{W(t): 0 \le t \le T\}$ be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\{\mathcal{F}(t): 0 \le t \le T\}$ be its natural filtration, and assume $\mathcal{F} = \mathcal{F}(T)$. Consider a stock with price process $\{S(t): 0 \le t \le T\}$ with

$$S(t) = S(0) \exp\Big\{ \int_0^t e^{-u} dW(u) + \int_0^t (1 - \frac{1}{2}e^{-2u}) du \Big\}.$$

- (a) Let $X(t) = \int_0^t e^{-u} dW(u) + \int_0^t (1 \frac{1}{2}e^{-2u}) du$. Determine the distribution of X(t). (1 pt)
- (b) Prove that $\{S(t): t \geq 0\}$ is an Itô process. (1 pt)
- (c) Let r be a constant interest rate. Find the risk-neutral measure $\widetilde{\mathbb{P}}$ equivalent to \mathbb{P} (i.e. $\widetilde{\mathbb{P}}(A) = 0$ if and only if $\mathbb{P}(A) = 0$, $A \in \mathcal{F}$) such that the discounted price process $\{e^{-rt}S(t): 0 \le t \le T\}$ is a martingale under $\widetilde{\mathbb{P}}$. (1.5 pts)

1