Mid-Term: Inleiding Financiele Wiskunde 2019-2020
 Start at 9 am and stop writing at 11 am Make good fotos of your exam and e-mail it to k.dajani1@uu.nl together with the signed Honor code

(1) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\left(A_{n}\right)_{n \in \mathbb{N}}$ be a sequence of pairwise independent sets in \mathcal{F} (i.e. $\mathbb{P}\left(A_{n} \cap A_{m}\right)=\mathbb{P}\left(A_{n}\right) \mathbb{P}\left(A_{m}\right)$ for $\left.n \neq m\right)$ satisfying $\mathbb{P}\left(A_{n}\right)=1 / 2$ for all $n \geq 1$. Let $\mathbb{I}_{A_{n}}$ be the indicator function of the set A_{n} and $\sigma\left(\mathbb{I}_{A_{n}}\right)$ the σ-algebra generated by the random variable $\mathbb{I}_{A_{n}}, n \geq 1$.
(a) Prove that $\sigma\left(\mathbb{I}_{A_{n}}\right)=\left\{\emptyset, \Omega, A_{n}, A_{n}^{c}\right\}$ and that the σ-algebras $\sigma\left(\mathbb{I}_{A_{n}}\right)$ and $\sigma\left(\mathbb{I}_{A_{m}}\right)$ are independent whenever $n \neq m$, i.e. $\mathbb{P}(C \cap D)=\mathbb{P}(C) \mathbb{P}(D)$ for any $C \in \sigma\left(\mathbb{I}_{A_{n}}\right)$ and any $D \in \sigma\left(\mathbb{I}_{A_{m}}\right)$. Conclude that $\mathbb{I}_{A_{1}}, \mathbb{I}_{A_{2}}, \cdots$ is a pairwise independent sequence. (1.5 pts)
(b) For $n \geq 1$, define $X_{n}=2 \mathbb{I}_{A_{n}}-1$. Set $M_{0}=0, M_{n}=\sum_{k=1}^{n} 2^{k-1} X_{k}$ for $n \geq 1$ and let $Y_{n}=$ $M_{n}^{2}-\frac{\left(4^{n}-1\right)}{3}$ for $n \geq 0$. Consider the filtration $\{\mathcal{F}(n): n \geq 0\}$ where $\mathcal{F}(0)=\{\emptyset, \Omega\}$ and $\mathcal{F}(n)=\sigma\left(\mathbb{I}_{A_{1}}, \cdots, \mathbb{I}_{A_{n}}\right)=$ the smallest σ-algebra containing all sets of the form $\left\{\mathbb{I}_{A_{j}} \in B\right\}$ for any Borel set B and any $1 \leq j \leq n$. Prove that the process $\left\{Y_{n}: n \geq 0\right\}$ is a martingale with respect to the filtration $\{\mathcal{F}(n): n \geq 0\}$. (1.5 pts)
(2) Let $\{W(t): t \geq 0\}$ be a Brownian motion defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\{\mathcal{F}(t): t \geq 0\}$ be a filtration for the Brownian motion. Define a process $\{X(t): t \geq 0\}$ by $X(t)=e^{t W(t)-t^{3}+1}, t \geq 0$.
(a) Prove that $\mathbb{P}(X(1)>1)=1 / 2$. (1 pt)
(b) Derive an expression for $\operatorname{Var}[X(t)]$, the variance of $X(t)$. (1.5 pts)
(c) For $s<t$, determine an expression for $\mathbb{E}[X(t) \mid \mathcal{F}(s)]$. (1.5 pts)
(3) Let $\{W(t): t \geq 0\}$ and $\{V(t): t \geq 0\}$ be two independent Brownian motions defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. By independence we mean that $W(t)$ and $V(s)$ are independent for all $s, t>0$. Let $0<\rho<1$ be a positive real number and define a process $\{Z(t): t \geq 0\}$ by $Z(t)=\rho W(t)+\sqrt{1-\rho^{2}} V(t)$. Prove that the process $\{Z(t): t \geq 0\}$ is a Brownian motion. (3 $\mathrm{pts})$
(Hint: if X and Y are independent normally distributed random variables with X being $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and Y being $\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$, then $X+Y$ is normally $\mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$ distributed $)$.

