Hertentamen Inleiding Financiele Wiskunde, 2011-12

* Punten per opgave:

opgave:	1	2	3	4
punten:	30	20	20	30

1. Consider a 2-period binomial model with $S_{0}=20, u=1.3, d=0.9$, and $r=0.1$. Suppose the real probability measure P satisfies $P(H)=p=\frac{1}{3}=1-P(T)$.
(a) Consider an Asian European option with payoff $V_{2}=\left(\left(S_{1}+S_{2}\right) / 2-20\right)^{+}$. Determine the price V_{n} at time $n=0,1$.
(b) Suppose $\omega_{1} \omega_{2}=H T$, find the values of the portfolio process $\Delta_{0}, \Delta_{1}(H)$ so that the corresponding wealth process satisfies $X_{0}=V_{0}$ (your answer in part (a)) and $X_{2}(H T)=V_{2}(H T)$.
(c) Consider the utility function $U(x)=4 x^{1 / 4}(x>0)$. Show that the random variable $X=X_{2}$ (which is a function of the two coin tosses) that maximizes $E(U(X))$ subject to the condition that $\widetilde{E}\left(\frac{X}{(1+r)^{2}}\right)=X_{0}$ is given by

$$
X=X_{2}=\frac{(1.1)^{2} X_{0}}{Z^{4 / 3} E\left(Z^{-1 / 3}\right)}
$$

(d) Consider part (c) and assume $X_{0}=20$. Determine the value of the optimal portfolio process $\left\{\Delta_{0}, \Delta_{1}\right\}$ and the value of the corresponding wealth process $\left\{X_{0}, X_{1}, X_{2}\right\}$.
(e) Consider now an Asian American put option with expiration $N=2$, and intrinsic value $G_{n}=20-\frac{S_{0}+\cdots+S_{n}}{n+1}, n=0,1,2$. Determine the price V_{n} at time $n=0,1$ of the American option. Find the optimal exercise time $\tau^{*}\left(\omega_{1} \omega_{2}\right)$ for all $\omega_{1} \omega_{2}$.
2. Consider a 3 -period (non constant interest rate) binomial model with interest rate process R_{0}, R_{1}, R_{2} defined by

$$
R_{0}=0, R_{1}\left(\omega_{1}\right)=.05+.01 H_{1}\left(\omega_{1}\right), R_{2}\left(\omega_{1}, \omega_{2}\right)=.05+.01 H_{2}\left(\omega_{1}, \omega_{2}\right)
$$

where $H_{i}\left(\omega_{1}, \cdots, \omega_{i}\right)$ equals the number of heads appearing in the first i coin tosses $\omega_{1}, \cdots, \omega_{i}$. Suppose that the risk neutral measure is given by $\widetilde{P}(H H H)=\widetilde{P}(H H T)=$ $1 / 8, \widetilde{P}(H T H)=\widetilde{P}(T H H)=\widetilde{P}(T H T)=1 / 12, \widetilde{P}(H T T)=1 / 6, \widetilde{P}(T T H)=1 / 9$, $\widetilde{P}(T T T)=2 / 9$.
(a) Calculate $B_{1,2}$ and $B_{1,3}$, the time one price of a zero coupon maturing at time two and three respectively.
(b) Consider a 3 -period interest rate swap. Find the 3 -period swap rate $S R_{3}$, i.e. the value of K that makes the time zero no arbitrage price of the swap equal to zero.
(c) Consider a 3-period floor that makes payments $F_{n}=\left(.055-R_{n-1}\right)^{+}$at time $n=1,2,3$. Find Floor $_{3}$, the price of this floor.
3. Consider the binomial model with $u=2^{1}, d=2^{-1}$, and $r=1 / 4$, and consider a perpetual American put option with $S_{0}=10$ and $K=12$. Suppose that Alice and Bob each buy such an option
(a) Suppose that Alice uses the strategy of exercising the first time the price reaches 5 euros. What should then the price be at time 0 ?
(b) Suppose that Bob uses the strategy of exercising the first time the price reaches 2.5 euros. What should then the price be at time 0 ?
(c) What is the probability that the price reaches 20 euros for the first time at time $n=5$?
4. Consider a random walk M_{0}, M_{1}, \cdots with probability p for an up step and $q=1-p$ for a down step, $0<p<1$. For $a \in \mathbb{R}$ and $b>1$, define $S_{n}^{a}=b^{-n} 2^{a M_{n}}, n=$ $0,1,2, \cdots$.
(a) For which values of a is the the process $S_{0}^{a}, S_{1}^{a}, \cdots$ a (i) martingale, (ii) supermartingale, (iii) submartingale?
(b) Show that the process $S_{0}^{a}, S_{1}^{a}, \cdots$ is a Markov Process.
(c) Suppose now that $p=1 / 2$, so M_{0}, M_{1}, \cdots, is the symmetric random walk. Let $\tau_{m}=\inf \left\{n \geq 0: M_{n}=m\right\}$. Determine the value of $E\left(S_{\tau_{m}}^{a}\right)$.

