Deeltentamen 2 Inleiding Financiele Wiskunde, 2011-12

exercise:	1	2	3	4
points:	25	25	25	25

1. Consider a 2-period binomial model with $S_{0}=100, u=1.1, d=0.8$, and $r=0.05$. Consider an American Put option with expiration $N=2$ and strike price $K=90$.
(a) Determine the price V_{n} at time $n=0,1$ of the American put option.
(b) Determine the optimal exercise time $\tau^{*}\left(\omega_{1} \omega_{2}\right)$ for all $\omega_{1} \omega_{2}$.
(c) Suppose $\omega_{1} \omega_{2}=T T$. Find the values of the replicating portfolio process $\Delta_{0}, \Delta_{1}(T)$. Show that if the buyer exercises at time 1 , then $X_{1}(T)=V_{1}(T)$, and if the buyer exercises at time 2 , then $X_{2}(T T)=V_{2}(T T)$.

Solution (a): Note that the risk neutral probbaility is $\widetilde{p}=5 / 6$ and $\widetilde{q}=1 / 1$. The price process is given by
$S_{0}=100, S_{1}(H)=110, S_{1}(T)=80, S_{2}(H H)=121, S_{2}(H T)=S_{2}(T H)=88, S @(T T)=64$.
The intrinsic value process is given by

$$
\begin{gathered}
G_{0}=-10, G_{1}(H)=-20, G_{1}(T)=10 \\
G_{2}(H H)=-31, G_{2}(H T)=2, G_{2}(T H)=2, G_{2}(T T)=26 .
\end{gathered}
$$

The payoff at time 2 is given by

$$
V_{2}(H H)=0, V_{2}(H T)=2, V_{2}(T H)=2, V_{2}(T T)=26
$$

Applying the American algorithm, we get

$$
\begin{gathered}
V_{1}(H)=\max \left(-20, \frac{1}{1.05}\left[\frac{5}{6} \times 0+\frac{1}{6} \times 2\right]\right)=0.31746 . \\
V_{1}(T)=\max \left(10, \frac{1}{1.05}\left[\frac{5}{6} \times 2+\frac{1}{6} \times 26\right]\right)=\max (10,5.71429)=10 . \\
V_{0}=\max \left(-10, \frac{1}{1.05}\left[\frac{5}{6} \times 0.31746+\frac{1}{6} \times 10\right]\right)=\max (-10,1.83925)=1.83925 .
\end{gathered}
$$

Solution (b): The optimal exercise time is given by

$$
\tau^{*}(H H)=\infty, \tau^{*}(H T)=2, \tau^{*}(T H)=\tau^{*}(T T)=1
$$

Solution (c): We first calculate

$$
\Delta_{0}=\frac{V_{1}(H)-V_{1}(T)}{S_{1}(H)-S_{1}(T)}=-0.32275
$$

and

$$
\Delta_{1}(T)=\frac{V_{2}(T H)-V_{2}(T T)}{S_{2}(T H)-S_{2}(T T)}=-1 .
$$

The replicating portfolio is described as follows. At time 0 sell the option for $V_{0}=$ 1.83925 , and short sell 0.32275 of a stock for 32.275 . Deposit the proceeds in the money market. So

$$
X_{0}=1.83925=\Delta_{0} S_{0}+34.11425
$$

At time $1, \omega_{1}=T$, so your wealth equals

$$
X_{1}(T)=\Delta_{0} S_{1}(T)+(1.05)(34.11425)=10=V_{1}(T) .
$$

If the option is exercised at time 1, then the payoff is 10 , and this is equal to your wealth. If the option is not exercised, then you adjust your portfolio (without changing your wealth), so

$$
X_{1}(T)=10=\Delta_{1}(T) S_{1}(T)+90
$$

and you can consume $C_{1}(T)=V_{1}(T)-\widetilde{E}_{1}\left((1.05)^{-1} V_{2}\right)(T)=10-5.71429=4.28571$. At time $2 \omega_{2}=T$, so

$$
X_{2}(T T)=\Delta_{1}(T) S_{2}(T T)+(1.05)(90-4.28571)=26=V_{2}(T T) .
$$

2. Consider the binomial model with up factor $u=2$, down factor $d=1 / 2$ and interest rate $r=1 / 4$. Consider a perpetual American put option with $S_{0}=2^{j}$, and $K=S_{0} 2^{-m}$. Suppose that the buyer of the option exercises the first time the price is less than or equal to $K / 2$.
(a) Show that the price at time zero of this option is given by

$$
V_{0}= \begin{cases}K-S_{0}, & \text { if } S_{0} \leq K / 2 \\ \frac{K^{2}}{4 S_{0}}, & \text { if } S_{0} \geq K\end{cases}
$$

(b) Consider the process $v\left(S_{0}\right), v\left(S_{1}\right), \cdots$ defined by

$$
v\left(S_{n}= \begin{cases}K-S_{n}, & \text { if } S_{n} \leq K / 2 \\ \frac{K^{2}}{4 S_{n}}, & \text { if } S_{n} \geq K\end{cases}\right.
$$

Show that $v\left(S_{n}\right) \geq\left(K-S_{n}\right)^{+}$for all $n \geq 0$, and that the discounted process $\left\{\left(\frac{4}{5}\right)^{n} v\left(S_{n}\right): n=0,1, \cdots\right\}$ is a supermartingale.

Solution (a): If $S_{0} \leq K / 2$, then the buyer exercises immediately. His payoff is $K-S_{0}$. So the price in this case must be $K-S_{0}$ as required. If $S_{0} \geq K$, then the buyer uses the exercise policy $\tau_{-(m+1)}$. Note that $S_{\tau_{-(m+1)}}=K / 2$, and by Theorem 5.2.3 we have $\left(\frac{4}{5}\right)^{\tau_{-(m+1)}}=\left(\frac{1}{2}\right)^{m+1}$.

So the price of the option in this case is

$$
\begin{aligned}
V_{0}=V^{\tau_{-(m+1)}} & =\widetilde{E}\left(\left(\frac{4}{5}\right)^{\tau_{-(m+1)}}\left(K-S_{\tau_{-(m+1)}}\right)\right) \\
& =\frac{K}{2}\left(\frac{1}{2}\right)^{m+1}=\frac{K S_{0} 2^{-m}}{4 S_{0}}=\frac{K^{2}}{4 S_{0}}
\end{aligned}
$$

Solution (b): We first show that $v\left(S_{n}\right) \geq\left(K-S_{n}\right)^{+}$. If $S_{n} \leq K / 2$, then $v\left(S_{n}\right)=$ $\left(K-S_{n}\right)=\left(K-S_{n}\right)^{+}$. If $S_{n} \geq K$, then $v\left(S_{n}\right)=\frac{K^{2}}{4 S_{n}}>0=\left(K-S_{n}\right)^{+}$. We now show that the discounted process is a supermartingale. If $S_{n}<K / 2$, then $S_{n+1} \leq K / 2$, thus

$$
\begin{aligned}
\widetilde{E}_{n}\left(\left(\frac{4}{5}\right)^{n+1} v\left(S_{n+1}\right)\right) & =\left(\frac{4}{5}\right)^{n+1}\left[\frac{1}{2}\left(K-2 S_{n}\right)+\frac{1}{2}\left(K-S_{n} / 2\right)\right] \\
& =\left(\frac{4}{5}\right)^{n}\left(\frac{4}{5} K-S_{n}\right) \\
& <\left(\frac{4}{5}\right)^{n}\left(K-S_{n}\right)=\left(\frac{4}{5}\right)^{n} v\left(S_{n}\right)
\end{aligned}
$$

If $S_{n}=K / 2$, then $S_{n+1} \in\{K / 4, K\}$. Thus,

$$
\begin{aligned}
\widetilde{E}_{n}\left(\left(\frac{4}{5}\right)^{n+1} v\left(S_{n+1}\right)\right) & =\left(\frac{4}{5}\right)^{n+1}\left[\frac{1}{2} \frac{K}{4}+\frac{1}{2} \frac{3 K}{4}\right] \\
& =\left(\frac{4}{5}\right)^{n} \frac{2}{5} K \\
& <\left(\frac{4}{5}\right)^{n} \frac{1}{2} K=\left(\frac{4}{5}\right)^{n} v\left(S_{n}\right) .
\end{aligned}
$$

If $S_{n} \geq K$, then

$$
\begin{aligned}
\widetilde{E}_{n}\left(\left(\frac{4}{5}\right)^{n+1} v\left(S_{n+1}\right)\right) & =\left(\frac{4}{5}\right)^{n+1}\left[\frac{1}{2} \frac{K^{2}}{8 S_{n}}+\frac{1}{2} \frac{K^{2}}{2 S_{n}}\right] \\
& =\left(\frac{4}{5}\right)^{n} \frac{K^{2}}{4 S_{n}}=\left(\frac{4}{5}\right)^{n} v\left(S_{n}\right) .
\end{aligned}
$$

In all cases we have $\widetilde{E}_{n}\left(\left(\frac{4}{5}\right)^{n+1} v\left(S_{n+1}\right)\right) \leq\left(\frac{4}{5}\right)^{n} v\left(S_{n}\right)$ as required.
3. Consider a random walk M_{0}, M_{1}, \cdots with probability p for an up step and $q=1-p$ for a down step, $0<p<1$. For $a \in \mathbb{R}$, define $S_{n}^{a}=10^{-n+a M_{n}}, n=0,1,2, \cdots$.
(a) For which values of a is the the process $S_{0}^{a}, S_{1}^{a}, \cdots$ a martingale?
(b) Suppose now that $p=1 / 2$, so M_{0}, M_{1}, \cdots, is the symmetric random walk. Let $\tau_{m}=\inf \left\{n \geq 0: M_{n}=m\right\}$. Determine the value of $E\left(S_{\tau_{m}}^{a}\right)$.

Solution (a): First note that the process $\left(S_{n}^{a}\right)$ is adjusted, and

$$
S_{n+1}^{a}=10^{-n-1+a M_{n}+a X_{n+1}}=S_{n}^{a} 10^{a X_{n+1}-1} .
$$

Since X_{n+1} is independent of the first n tosses we have

$$
E_{n}\left(10^{a X_{n+1}-1}\right)=E\left(10^{a X_{n+1}-1}\right)=10^{-1}\left(10^{a} p+10^{-a} q\right) .
$$

Thus,

$$
E_{n}\left(S_{n+1}^{a}\right)=S_{n}^{a} 10^{-1}\left(10^{a} p+10^{-a} q\right) .
$$

For the process to be a martingale, we need to find the values of a such that

$$
10^{-1}\left(10^{a} p+10^{-a} q\right)=1
$$

or equivalently,

$$
p 10^{2 a}-1010^{a}+q=0
$$

Solving, we get

$$
10^{a}=\frac{5 \pm \sqrt{25-p q}}{p}
$$

implying

$$
a=\log _{10}\left(\frac{5 \pm \sqrt{25-p q}}{p}\right) .
$$

Solution (c): Observe that $S_{\tau_{m}}^{a}=10^{-\tau_{m}+a M_{\tau_{m}}}=10^{-\tau_{m}+m a}$. By Theorem 5.2.3 we have

$$
E\left(S_{\tau_{m}}^{a}\right)=10^{m a} E\left(\left(\frac{1}{10}\right)^{\tau_{n}}\right)=10^{m a}(10-3 \sqrt{11})^{m} .
$$

4. Consider a 3 -period (non constant interest rate) binomial model with interest rate process R_{0}, R_{1}, R_{2} defined by

$$
R_{0}=0, R_{1}\left(\omega_{1}\right)=.05+.01 H_{1}\left(\omega_{1}\right), R_{2}\left(\omega_{1}, \omega_{2}\right)=.05+.01 H_{2}\left(\omega_{1}, \omega_{2}\right)
$$

where $H_{i}\left(\omega_{1}, \cdots, \omega_{i}\right)$ equals the number of heads appearing in the first i coin tosses $\omega_{1}, \cdots, \omega_{i}$. Suppose that the risk neutral measure is given by $\widetilde{P}(H H H)=\widetilde{P}(H H T)=$ $1 / 8, \widetilde{P}(H T H)=\widetilde{P}(T H H)=\widetilde{P}(T H T)=1 / 12, \widetilde{P}(H T T)=1 / 6, \widetilde{P}(T T H)=1 / 9$, $\widetilde{P}(T T T)=2 / 9$.
(a) Calculate $B_{1,2}$ and $B_{1,3}$, the time one price of a zero coupon maturing at time two and three respectively.
(b) Consider a 3 -period interest rate swap. Find the 3-period swap rate $S R_{3}$, i.e. the value of K that makes the time zero no arbitrage price of the swap equal to zero.
(c) Consider a 3-period floor that makes payments $F_{n}=\left(.055-R_{n-1}\right)^{+}$at time $n=1,2,3$. Find Floor $_{3}$, the price of this floor.

Solution (a): We first calcultate the values of R_{0}, R_{1}, R_{2} and D_{1}, D_{2}, D_{3} in the following tables:

$\omega_{1} \omega_{2}$	R_{0}	R_{1}	R_{2}
$H H$	0	0.06	0.07
$H T$	0	0.06	0.06
$T H$	0	0.05	0.06
$T T$	0	0.05	0.05

$\omega_{1} \omega_{2}$	$\frac{1}{1+R_{0}}$	$\frac{1}{1+R_{1}}$	$\frac{1}{1+R_{2}}$	D_{1}	D_{2}	D_{3}	\widetilde{P}
$H H$	1	$\frac{1}{1.06}$	$\frac{1}{1.07}$	1	$\frac{1}{1.06}$	$\frac{1}{1.1342}$	$\frac{1}{4}$
$H T$	1	$\frac{1}{1.06}$	$\frac{1}{1.06}$	1	$\frac{1}{1.06}$	$\frac{1}{1.1236}$	$\frac{1}{4}$
$T H$	1	$\frac{1}{1.1}$	$\frac{1}{1.05}$	1	$\frac{1}{1.06}$	$\frac{1}{1.05}$	$\frac{1}{6}$
$T T$	1	$\frac{1}{1.05}$	$\frac{1}{1.05}$	1	$\frac{1}{1.05}$	$\frac{1}{1.1025}$	$\frac{1}{3}$

Since $D_{1}=1$ and D_{2} is known at time 1, then $B_{1,2}=\widetilde{E}_{1}\left(D_{2}\right)=D_{2}$. This gives $B_{1,2}(H)=1 / 1.06$ and $B_{1,2}(T)=1 / 1.05$.

Now, D_{3} depends on the first two coin tosses only, and since $D_{1}=1$ we have

$$
\begin{aligned}
B_{1,3}(H)=\widetilde{E}_{1}\left(D_{3}\right)(H) & =D_{3}(H H) \widetilde{P}\left(\omega_{2}=H \mid \omega_{1}=H\right)+D_{3}(H T) \widetilde{P}\left(\omega_{2}=T \mid \omega_{1}=H\right) \\
& =\frac{1}{1.1342} \frac{1}{2}+\frac{1}{1.1236} \frac{1}{2}=0.8858
\end{aligned}
$$

and

$$
\begin{aligned}
B_{1,3}(T)=\widetilde{E}_{1}\left(D_{3}\right)(T) & =D_{3}(T H) \widetilde{P}\left(\omega_{2}=H \mid \omega_{1}=T\right)+D_{3}(T T) \widetilde{P}\left(\omega_{2}=T \mid \omega_{1}=T\right) \\
& =\frac{1}{1.113} \frac{1}{3}+\frac{1}{1.1025} \frac{2}{3}=0.9499
\end{aligned}
$$

Solution (b): From Theorem 6.3.7, we know that

$$
S R_{3}=\frac{1-B_{0,3}}{B_{0,1}+B_{0,2}+B_{0,3}}
$$

Now,

$$
B_{0,1}=\widetilde{E}\left(D_{1}\right)=1
$$

D_{2} depends on the ω_{1} only, so

$$
\begin{aligned}
B_{0,2}=\widetilde{E}\left(D_{2}\right) & =\frac{1}{1.06} \widetilde{P}\left(\omega_{1}=H\right)+\frac{1}{1.05} \widetilde{P}\left(\omega_{1}=T\right) \\
& =\frac{1}{1.06} \frac{1}{2}+\frac{1}{1.05} \frac{1}{2}=0.94789
\end{aligned}
$$

Now, D_{3} depends only on ω_{1}, ω_{2}, hence

$$
\begin{aligned}
B_{0,3}=\widetilde{E}\left(D_{3}\right) & =\frac{1}{1.1342} \widetilde{P}\left(\omega_{1}=H, \omega_{2}=H\right)+\frac{1}{1.1236} \widetilde{P}\left(\omega_{1}=H, \omega_{2}=T\right) \\
& +\frac{1}{1.113} \widetilde{P}\left(\omega_{1}=T, \omega_{2}=H\right)+\frac{1}{1.1025} \widetilde{P}\left(\omega_{1}=H, \omega_{2}=H\right) \\
& =\frac{1}{1.1342} \frac{1}{4}+\frac{1}{1.1236} \frac{1}{4}+\frac{1}{1.113} \frac{1}{6}+\frac{1}{1.1025} \frac{1}{3} \\
& =0.895 .
\end{aligned}
$$

Thus,

$$
S R_{3}=\frac{1-B_{0,3}}{B_{0,1}+B_{0,2}+B_{0,3}}=\frac{1-0.91787}{2.86576}=0.0287
$$

Solution (c): From Definition 6.3 .8 we have

$$
\text { Floor }_{3}=\sum_{n=1}^{3} \widetilde{E}\left(D_{n}\left(0.055-R_{n-1}\right)^{+} .\right)
$$

We display the values of $\left.\left(0.055-R_{n-1}\right)^{+}\right)$in a table

$\omega_{1} \omega_{2}$	$\left(0.055-R_{0}\right)^{+}$	$\left(0.055-R_{1}\right)^{+}$	$\left(0.055-R_{2}\right)^{+}$
$H H$	0.055	0	0
$H T$	0.055	0	0
$T H$	0.055	0.005	0
$T T$	0.055	0.005	0.005

Thus,

$$
\widetilde{E}\left(D_{1}\left(0.055-R_{0}\right)^{+}\right)=0.055,
$$

$\widetilde{E}\left(D_{2}\left(0.055-R_{1}\right)^{+}\right)=D_{2}(H)(0) P(H)+D_{2}(T)(0.005) P(T)=\frac{1}{1.05}(0.005) \frac{1}{2}=0.00238$, and

$$
\widetilde{E}\left(D_{3}\left(0.055-R_{2}\right)^{+}\right)=D_{3}(T T)(0.055) P(T T)=\frac{1}{1.1025}(0.005) \frac{1}{3}=0.00151
$$

Therefore,

$$
\text { Floor }_{3}=0.055+0.00238+0.00151=0.05889 .
$$

