Stochastische Processen (WISB362) 4 July 2007

100 points in total. Provide detailed solutions!

Question 1

The behaviour of a slot machine can be described by a Markov chain with possible states $\{1,2\}$. Each time a gambler inserts 3 cents in the machine for playing one game, the machine randomly changes the state according to the transition matrix

$$
P=\left(\begin{array}{cc}
0.25 & 0.75 \\
0.5 & 0.5
\end{array}\right)
$$

Then, the machine pays out 7 cents if the new state is 1 , or pays nothing otherwise. Let R_{n} be the return of the gambler per one game after n consecutive games (in other words, R_{n} is the value obtained by computing the arithmetic average of wins/losses in n games). Find the limiting value $\lim _{n \rightarrow \infty} R_{n}$.

Question 2

(15 points)
Consider a Markov chain $\left(X_{n}, n \geq 0\right)$ with state-space $\{1,2,3,4\}$ and transition matrix

$$
P=\left(\begin{array}{cccc}
0.25 & 0 & 0.75 & 0 \\
0 & 0.25 & 0 & 0.75 \\
0.5 & 0 & 0.5 & 0 \\
0 & 0.5 & 0 & 0.5
\end{array}\right)
$$

a) Determine all stationary distributions.
b) For $\tau_{1}=\min \left\{n \geq 1: X_{n}=1\right\}$, compute $\mathbb{E}_{1} \tau_{1}$, the expected return time to state 1 . (5 points)

Question 3

Find the stationary distribution for a random walk on $S=\{0,1,2, \ldots\}$ with transition probabilities

$$
\begin{gathered}
p_{j, j+1}=p, p_{j, j-1}=q \text { for } j \geq 1 \\
p_{0,1}=p_{0,0}=1 / 2
\end{gathered}
$$

where $0<p<1 / 2, p+q=1$.

Question 4

(15 points)
A Markov chain with the state-space $S=\mathbb{Z}^{2}$ jumps from state $(i, j) \in S$ to each of the states $(i+1, j),(i, j+1),(i-1, j),(i, j-1)$ with the same probability $1 / 4$.
a) Find an invariant measure for this Markov chain.
b) Find all invariant measures.

Question 5

A speed camera on a highway detects vehicles travelling over the legal speed limit at times of a Poisson process, on the average 20 violators per hour. One violator was detected in time 13:00-13:05 and two violators in time 13:05-13:15.
a) What is the probability of this event? (Do not bother to give the numerical value unless you have a microcalculator with you.)

Let $T_{1}<T_{2}<T_{3}$ be the times when the camera snapped the speeding cars.
b) Determine the joint density of $\left(T_{1}, T_{2}, T_{3}\right)$.
(10 points)

Question 6

(20 points)
Meteorites strike the Earth surface at times of a Poisson process of some rate λ. For a given time instant t, let T be the time of a strike most close to t.
a) What is the probability $\mathbb{P}(T>t)$?
b) What is the distribution of $|T-t|$?
c) Fix time 0 (for instance, noon 02.07 .2007) and some $t>0$. Let B be the time of the last meteorite strike before t, with the convention $B=0$ is there are no strikes in the time from 0 to t; and let A be the time of the first strike after t. Determine the expected value $\mathbb{E}(A-B)$. (10 points)

Question 7

(10 points)
Let $\left\{X_{1}, X_{2}, \ldots, X_{N_{1}}\right\}$ be the random set of points of a Poisson process $\left(N_{t}, t \in[0,1]\right)$ with rate λ (the points may be labelled by increase, so that $X_{1}<X_{2}<\ldots<X_{N_{1}}$). Note that this set is empty if $N_{1}=0$. Let $f:[0,1] \rightarrow[0,1]$ be the function $f(x)=2 x(\bmod 1)$. For instance, $f(0.3)=0.6(\bmod 1)=0.6, \quad f(0.74)=1.48(\bmod 1)=0.48$. Show that $\left\{f\left(X_{1}\right), \ldots, f\left(X_{N_{1}}\right)\right\}$ is again a collection of points of a Poisson process on the interval $[0,1]$ with rate λ.

