JUSTIFY YOUR ANSWERS

Allowed: calculator, material handed out in class and handwritten notes (your handwriting). NO BOOK IS ALLOWED

NOTE:

- The test consists of five exercises for a total of 10 credits plus two bonus problems for a maximum of 1.5 pts .
- The score is computed by adding all the valid credits up to a maximum of 10 .

Exercise 1. (0.6 pts.) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables with mean μ and variance σ^{2} and let N be an integer-valued random variable of mean λ independent of the previous ones. Define

$$
S=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} X_{i} .
$$

Determine $E\left(S^{2}\right)$ as a function of μ, σ^{2} and λ.
Exercise 2. Consider a Markov chain with state space $\{1,2,3,4\}$ and transition matrix

$$
\mathbb{P}=\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 / 3 & 0 & 1 / 3 & 1 / 3
\end{array}\right)
$$

(a) (0.4 pts.) Show that $\mathbb{P}_{44}^{n}=(1 / 3)^{n}$.
(b) (0.6 pts.) Show that the state " 4 " is transient.
(c) (0.6 pts.) Let $T=\inf \left\{n>0: X_{n} \neq 4\right\}$ be the time it takes the process to exit " 4 " (for ever). Compute $E\left(T \mid X_{0}=4\right)$. [Hint: you may want to use that for a discrete random variable Z, $\left.E[Z]=\sum_{k \geq 0} P(Z>k).\right]$
(d) (0.6 pts.) Let $T_{3}=\inf \left\{n>0: X_{n}=3\right\}$ be the absorption time at state " 3 ". Compute $P\left(T=T_{3} \mid\right.$ $X_{0}=4$), that is the probability that the process exist " 4 " only to be absorbed by " 3 ".
(e) (0.6 pts.) Compute all the invariant measures of the process.

Exercise 3. Let X_{1}, X_{2} and X_{3} be independent exponential random variables with respective rates λ_{1}, λ_{2} and λ_{3}. Compute:
(a) (0.6 pts.) $P\left(X_{1}>X_{2}+t \mid X_{1}>t\right)$.
(b) (0.6 pts.) $P\left(X_{1}>X_{2}+t \mid X_{2}>t\right)$.
(c) $\left(0.6\right.$ pts.) $E\left(X_{3} \mid X_{1}<X_{2}<X_{3}\right)$.

Exercise 4. Let $\{N(t): t \geq 0\}$ be a Poisson process with rate λ. Find
(a) (0.6 pts.) $P(N(5)=5, N(17)=17, N(20)=20)$.
(b) (0.6 pts.) $E[N(20) \mid N(17)=17, N(5)=5]$.
(c) (0.6 pts.) Determine λ such that

$$
E[N(20) \mid N(17)=17]=E[N(17) \mid N(20)=40]
$$

Exercise 5. An atom subjected to electromagnetic radiation oscillates between its ground state G and two excited states E_{1} and E_{2}. Measurements show that the time the atom remains in each excited state is exponentially distributed with mean $1 / 4$ (picoseconds), after which the atom relaxes to the ground state. Once relaxed, the atom remains in the ground state an exponential time with mean 1. Due to its lower energy, the atom goes 3 times more often to the state E_{1} than to E_{2}.
(a) (0.6 pts.) Model this evolution as a continuous-time Markov chain among the positions E_{1}, G and $E 2$. That is, determine the abandoning rates $\nu_{G}, \nu_{E_{1}}$ and $\nu_{E_{2}}$ and the transitions $\mathbb{P}_{i j}$ with $i, j=E_{1}, G, E_{2}$.
(b) (0.4 pts.) Can this process be interpreted as a birth-and-death process?
(c) (0.6 pts.) Determine, in the long run, the fraction of time spent by the atom in each of the three positions.
(d) (0.8 pts.) Write the 9 backward Kolmogorov equations, and observe that they form three sets of three coupled linear differential equations.
(e) $\left(0.6\right.$ pts.) Determine $P_{E_{1} E_{1}}(t)-P_{E_{2} E_{1}}(t)$.

Bonus problems

Only one of them may count for the grade
You can try both, but only the one with the highest grade will be considered

Bonus 1. [Not all states can be transient] Consider a homogeneous (or shift-invariant) Markov chain $\left(X_{n}\right)_{n \in \mathbb{N}}\left(X_{n}\right)_{n \in \mathbb{N}}$ with finite state space S. Let us recall that the hitting time of a state y is

$$
T_{y}=\min \left\{n \geq 1: X_{n}=y\right\}
$$

(a) If $\ell \leq n \in \mathbb{N}, x, y \in S$, prove the following
-i- (0.5 pt.)

$$
P\left(X_{n}=y, T_{y}=\ell \mid X_{0}=x\right)=P_{y y}^{n-\ell} P\left(T_{y}=\ell \mid X_{0}=x\right) .
$$

-ii- (0.5 pt.$)$

$$
P_{x y}^{n}=\sum_{\ell=1}^{n} P_{y y}^{n-\ell} P\left(T_{y}=\ell \mid X_{0}=x\right)
$$

(b) Conclude the following:
-i- (0.3 pt .) If every state is transient, then for every $x, y \in S$.

$$
\sum_{n \geq 0} P_{x y}^{n}<\infty .
$$

-ii- (0.2 pt .) The previous result leads to a contradiction with the stochasticity property of the matrix \mathbb{P}. Hence not all states can be transient.

Bonus 2. [Invariant probabilities are indeed invariant] Consider a continuous-time Markov chain $\{X(t): t \geq 0\}$ with countable state-space $S=\left\{x_{1}, x_{2}, \ldots\right\}$, waiting rates ν_{i} and embedded transition matrix $P_{i j}, i, j \geq 1$. Let $\left(P_{i}\right)_{i \geq 1}$ be an invariant probability distribution, that is, a family of positive numbers P_{i} satisfying $\sum_{i} P_{i}=1$ and

$$
\sum_{k: k \neq i} P_{k} \nu_{k} P_{k i}=\nu_{i} P_{i}
$$

for all $i \geq 1$. Prove that if the process is initially distributed with the invariant law $\left(P_{i}\right)$, this law is kept for the rest of the evolution. That is, prove that

$$
P\left(X(0)=x_{i}\right)=P_{i} \quad \Longrightarrow \quad P\left(X(t)=x_{i}\right)=P_{i}
$$

for all $t \geq 0$. Suggestion: Follow the following steps.
(i) (0.5 pt.) Show that if $P\left(X(0)=x_{i}\right)=P_{i}$, then

$$
P\left(X(t)=x_{j}\right)=\sum_{i} P_{i} P_{i j}(t) .
$$

(ii) (0.7 pt.) Use Kolmogorov backward equations to show that, as a consequence,

$$
\frac{d}{d t} P\left(X(t)=x_{j}\right)=0
$$

for all $t \geq 0$.
(iii) (0.3 pt.) Conclude.

