JUSTIFY YOUR ANSWERS

Allowed: material handed out in class and handwritten notes (your handwriting)

NOTE:

- The test consists of four problems plus two bonus problems
- The score is computed by adding all the credits up to a maximum of 10

Problem 1. Requests to a computer system are handled by two servers that provide answers with respective independent exponential rates λ_1 and λ_2 . Requests are processed on a first-come first-serve basis as soon as a server becomes free. Request C arrives and finds both servers busy processing requests A and B. Denote W the waiting time of request C until a server becomes free, T_C its processing time once accepted by a server, and $T = W + T_C$ the total time elapsed between the arrival of request C and the completion of its answer.

- (a) (1 pt.) Determine the law of W.
- (b) (1 pt.) Prove that

$$E(T) = \frac{3}{\lambda_1 + \lambda_2} \, .$$

Problem 2. Let $\{N(t) : t \ge 0\}$ be a Poisson process with rate λ . Let T_n denote the *n*-th inter-arrival time and S_n the time of the *n*-th event. Let t > 0. Find:

- (a) (0.5 pts.) $P(N(t) = 10 \mid N(t/2) = 5, N(t/4) = 3).$
- (b) (1 pt.) P(N(t/2) = 5 | N(t) = 10).
- (c) (0.5 pts.) $E[S_5 | S_4 = 3].$
- (d) (1 pt.) $E[T_2 | T_1 < T_2 < T_3].$

Problem 3. Consider a pure-birth process, that is a continuous-time Markov chain characterised by birth rates λ_i , i = 0, 1, 2, ..., and zero death rates ($\mu_i = 0$ for all $i \ge 0$). Note that, in this case, only upward transitions are allowed, that is $P_{ij}(t) = 0$ if j < i.

- (a) (1 pt.) Write the Kolmogorov backward equations for the transition evolutions $P_{ij}(t)$ for $i \ge j$ (discriminate the cases j = i and $j \ge i + 1$).
- (b) (1 pt.) Determine $P_{ii}(t)$ for $i \ge 0$.
- (c) (1 pt.) Assuming $\lambda_i = \lambda$ for $i \ge 0$, determine the transition evolutions $P_{i\,i+1}(t)$ for all $i \ge 0$. Verify that they coincide with those of a Poisson process with rate λ .

(Please turn over)

Problem 4. Consider an exponential queuing system with 2 servers available: Arrival and service times are independent exponential random variables. Customers arrive independently at rate λ and wait in line till the first server becomes available. Each of the two servers processes customers at rate μ .

- (a) (0.5 pts.) Write the system as a birth-and-death chain, that is, determine the birth rates λ_n and death rates μ_n .
- (b) (1 pt.) Determine the limiting probabilities P_i , $i \ge 0$. Under which condition do these probabilities exist?
- (c) (0.5 pts.) Show that if $\lambda = \mu$, in the long run there is at least one server idle 2/3 of the time.

Bonus problems

Bonus 1. (1 pt.) Let T_i , $i \ge 1$ be a sequence of independent identically distributed exponential random variables of rate λ , and let $S_n = \sum_{i=1}^n T_i$, $n \ge 1$. Prove that for each $n \ge 1$ and each t > 0,

$$P(S_n \le t, S_{n+1} > t) = \frac{e^{-\lambda t} (\lambda t)^n}{n!}$$

Bonus 2. (1 pt.) Let $(\pi_i)_{0 \le i \le n}$ be the invariant measure for the discrete-time Markov process on $S = \{0, 1, \ldots, n\}$ defined by a matrix $(P_{ij})_{0 \le i,j \le n}$ with $P_{ii} = 0$. Prove that the measure

$$P_i = \frac{\pi_i/\nu_i}{\sum_j \pi_j/\nu_j} \qquad 0 \le i \le n$$

is then invariant for the continuous-time Markov chain with state space S, jump rates ν_i and transition probabilities P_{ij} , $0 \le i, j \le n$.