Statistiek (WISB263)
 Sketch of Solutions (Final Exam)
 January 30, 2017

Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.
(The exam is an open-book exam: notes and book are allowed. The scientific calculator is allowed as well).
The maximum number of points is 100 .
Points distribution: 25-20-30-25

1. Given two parameters $a>0$ and $k>0$, let $\mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ be a random sample of n i.i.d. observations sampled from the random variable X with density function:

$$
f_{X}(x ; a, k):= \begin{cases}k e^{-k(x-a)} & x \geq a \\ 0 & x<a\end{cases}
$$

(a) $(8 \mathrm{pt})$ Find sufficient statistics for a, k and for the couple (a, k).

Solution: We can write the likelihood of the sample as:

$$
L(\boldsymbol{X} ; a, k)=k^{n} e^{-k \sum_{i=1}^{n} X_{i}} e^{n k a} \mathbf{1}\left(X_{(1)} \geq a\right)
$$

By the factorization theorem, we have the following sufficient statistics:

$$
\begin{gathered}
\left(X_{(1)}, \sum_{i=1}^{n} X_{i}\right) \text { for }(a, k) \quad[\text { e.g. } h(\boldsymbol{X})=1, g(T(\boldsymbol{X}), k, a)=L(\boldsymbol{X} ; a, k)] \\
X_{(1)} \text { for } a, \quad\left[\text { e.g. } h(\boldsymbol{X})=k^{n} e^{-k \sum_{i=1}^{n} X_{i}}, g(T(\boldsymbol{X}), k, a)=e^{n k a} \mathbf{1}\left(X_{(1)} \geq a\right)\right] \\
\sum_{i=1}^{n} X_{i} \text { for } k, \quad\left[\text { e.g. } h(\boldsymbol{X})=e^{n k a} \mathbf{1}\left(X_{(1)} \geq a\right), g(T(\boldsymbol{X}), k, a)=k^{n} e^{-k \sum_{i=1}^{n} X_{i}}\right]
\end{gathered}
$$

(b) (5pt) Determine, in case it exists, the maximum likelihood estimator of a in case k is known.

Solution:

Since

$$
L(\boldsymbol{X} ; a, k) \propto e^{n k a} \mathbf{1}\left(X_{(1)} \geq a\right)
$$

the likelihood is null for $X_{(1)}<a$ and increasing in a for $X_{(1)} \geq a$, it follows that $\hat{a}_{M L E}=X_{(1)}$.
(c) (5pt) Determine, in case it exists, the maximum likelihood estimator of k in case a is known.

Solution:

Provided that $X_{(1)} \geq a$, it follows that $n a-\sum_{i=1}^{n} X_{i} \leq 0$. Therefore

$$
L(\boldsymbol{X} ; a, k) \propto e^{k\left(n a-\sum_{i=1}^{n} X_{i}\right)+n \log k}=: f(k ; a)
$$

and for a fixed a, we have to maximize in k the positive, continuous and differentiable function $\log f(k ; a)$. Since there is only one critical point and since $\frac{d^{2}}{d k^{2}} \log f(k)<0$, it follows that:

$$
\hat{k}_{M L E}=\frac{n}{\sum_{i=1}^{n} X_{i}-n a}
$$

(d) $(7 \mathrm{pt})$ Determine, in case it exists, the maximum likelihood estimator of the couple (a, k). Solution:
Let us consider $k>0, a \leq X_{(1)}$:

$$
L(\boldsymbol{X} ; a, k)=k^{n} e^{-k \sum_{i=1}^{n} X_{i}} e^{n k a} \leq k^{n} e^{-k \sum_{i=1}^{n} X_{i}+k n X_{(1)}}=e^{k\left(n X_{(1)}-\sum_{i=1}^{n} X_{i}\right)+n \log k}=f\left(k ; X_{(1)}\right) \leq f\left(\tilde{k} ; X_{(1)}\right)
$$

where $\tilde{k}=\frac{n}{\sum_{i=1}^{n} X_{i}-n X_{(1)}}$. Therefore $\left(\frac{n}{\sum_{i=1}^{n} X_{i}-n X_{(1)}}, X_{(1)}\right)$ is the MLE of (k, a).
2. We consider the following three random samples of size 100 :

$$
\mathbb{X}_{i}:=\left\{X_{i, 1}, X_{i, 2}, \ldots X_{i, 100}\right\}
$$

with $i \in\{1,2,3\}$. Each sample \mathbb{X}_{i} consists of i.i.d. normal random variables, such that $X_{i, j} \sim N\left(50, \sigma_{i}^{2}\right)$ for any $j \in\{1, \ldots, 100\}$. Moreover the samples are independent (i.e. $X_{i, j} \perp X_{\ell m}$, for any $i \neq \ell$). We want to test:

$$
\begin{cases}H_{0}: & \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2} \\ H_{1}: & \text { the variances are not equal. }\end{cases}
$$

(a) [10pt] Show that the Generalized Likelihood Ratio Test (GLRT) statistic Λ is such that:

$$
-2 \log \Lambda=300 \log \left(\frac{1}{3} \sum_{i=1}^{3} s_{i}^{2}\right)-100 \sum_{i=1}^{3} \log s_{i}^{2}
$$

where $s_{i}^{2}:=1 / 100 \sum_{j=1}^{100}\left(X_{i, j}-50\right)^{2}$, with $i \in\{1,2,3\}$.

Solution:

The likelihood can be written as:

$$
L\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}\right)=\prod_{i=1}^{3} \prod_{j=1}^{100} \frac{1}{\left(2 \pi \sigma_{i}^{2}\right)^{1 / 2}} \exp \left(-\frac{1}{2 \sigma_{i}^{2}}\left(X_{i, j}-50\right)^{2}\right)=\frac{C}{\left(\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}^{2}\right)^{50}} e^{-50\left(\frac{S_{1}^{2}}{\sigma_{1}^{2}}+\frac{S_{2}^{2}}{\sigma_{2}^{2}}+\frac{S_{3}^{2}}{\sigma_{3}^{2}}\right)}
$$

and the \log-likelihood is:

$$
\ell\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}\right)=\log (C)-50 \sum_{i=1}^{3} \log \sigma_{i}^{2}-50 \sum_{i=1}^{3} \frac{S_{i}^{2}}{\sigma_{i}^{2}}
$$

By definition of GLRT statistic, we have:

$$
\log \Lambda=\max _{\sigma^{2}} \ell\left(\sigma^{2}, \sigma^{2}, \sigma^{2}\right)-\max _{\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}} \ell\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}\right)
$$

By standard calculations we find that:

$$
\hat{\sigma}^{2}:=\operatorname{argmax}_{\sigma^{2}} \ell\left(\sigma^{2}, \sigma^{2}, \sigma^{2}\right)=\frac{1}{3} \sum_{i=1}^{3} S_{i}^{2}
$$

and that

$$
\left(\hat{\sigma}_{1}^{2}, \hat{\sigma}_{2}^{2}, \hat{\sigma}_{3}^{2}\right):=\operatorname{argmax}_{\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}} \ell\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}\right)=\left(S_{1}^{2}, S_{2}^{2}, S_{3}^{2}\right)
$$

Hence

$$
\begin{aligned}
-2 \log \Lambda & =2\left(\ell\left(\hat{\sigma}_{1}^{2}, \hat{\sigma}_{2}^{2}, \hat{\sigma}_{3}^{2}\right)-\ell\left(\hat{\sigma}^{2}, \hat{\sigma}^{2}, \hat{\sigma}^{2}\right)\right) \\
& =300 \log \left(\frac{1}{3} \sum_{i=1}^{3} S_{i}^{2}\right)-100 \sum_{i=1}^{3} \log S_{i}^{2}
\end{aligned}
$$

(b) [10pt] If the collected data $\mathbf{x}_{i}=\left\{x_{i, 1}, \ldots, x_{i, 100}\right\}$, with $i \in\{1,2,3\}$, are such that:

$$
\begin{array}{lll}
\sum_{j=1}^{100} x_{1, j}=5040, & \sum_{j=1}^{100} x_{2, j}=4890, & \sum_{j=1}^{100} x_{3, j}=4920, \\
\sum_{j=1}^{100} x_{1, j}^{2}=264200, & \sum_{j=1}^{100} x_{2, j}^{2}=250000, & \sum_{j=1}^{100} x_{2, j}^{2}=251700
\end{array}
$$

perform a GLRT at $\alpha=0.05$ level of significance (you can consider the sample size $n=100$ large enough for applying large sample results).

Solution:

By asymptotic results we have that $-2 \log \Lambda \approx \chi_{2}^{2}$. For the given data:

$$
-2 \log \Lambda=0.283<\chi_{2}^{2}(0.05)
$$

so that ca cannot reject the null hypothesis at the 5% level of significance.
3. The life times (in hours) of $n=30$ batteries have been measured from a company interested in the performances of a new product. In this way, a sample $\mathbb{X}=\left\{X_{1}, \ldots X_{30}\right\}$ of i.i.d. random variable X_{j}, representing the life time of the j-th battery, has been collected. In the following table the empirical cumulative distribution function $\hat{F}_{30}(x)$ (i.e. $\left.\hat{F}_{n}(x)=1 / n \sum_{j=1}^{n} \mathbf{1}\left(X_{j} \leq x\right)\right)$ is reported:

x (in hours)	1	2	4	6	8	11	13	27	29	42
$\hat{F}_{30}(x)$	$7 / 30$	$12 / 30$	$16 / 30$	$20 / 30$	$23 / 30$	$26 / 30$	$27 / 30$	$28 / 30$	$29 / 30$	1

(a) $[6 \mathrm{pt}]$ Determine an estimator of the probability that the battery produced lasts more than 9 hours (i.e. $\mathbb{P}(X>9))$.
Solution:
We want to estimate $p:=\mathbb{P}(X>9)$. A non-parametric unbiased estimator is given by:

$$
T=1-\hat{F}_{30}(9)=1-\hat{F}_{30}(8)=7 / 30
$$

(b) [8pt] Derive an approximated 95% confidence interval for the probability that the battery produced lasts more than 9 hours.

Solution:

Since

$$
T \approx N(p, p(1-p) / 30)
$$

A 95% CI for p is given by $(0.082,0.394)$.

Due to previous statistical analyses performed on similar batteries, we can assume now that the sample is a collection of 30 i.i.d. exponential random variable with expected value θ (i.e. $X_{i} \sim \operatorname{Exp}(1 / \theta)$).
(c) [8pt] Under these parametric assumptions, calculate the maximum likelihood estimator of the probability that the battery produced lasts more than 9 hours.

Solution:

We want to estimate $p(\theta):=\mathbb{P}_{\theta}(T>9)=e^{-9 / \theta}$. Since for an exponential distribution $\hat{\theta}_{M L E}=\bar{X}$, by the invariance principle, it follows that $\hat{p}_{M L E}=e^{-9 / \bar{X}}$.
(d) [8pt] If we denote with $p(\theta)$ the probability that the battery produced lasts more than 9 hours, propose a test for testing the hypotheses:

$$
\begin{cases}H_{0}: & p=0.32 \\ H_{1}: & p=0.16 .\end{cases}
$$

at the α level of significance.

Solution:

Since the H_{0} and H_{1} are simple hypotheses, we can use the Neyman Pearson Lemma in order to construct the most powerful test with the α level of significance. Note that $p=0.16$ iff $\theta=-9 / \log 0.16=: \theta_{0}$ and $p=0.32$ iff $\theta=-9 / \log 0.32=: \theta_{1}$. The LRT statistics can be written as:

$$
\Lambda=\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}=\exp \left(n \bar{X}\left(1 / \theta_{1}-1 / \theta_{0}\right)\right)
$$

so that the test rejects for $\bar{X}<k$. By the CLT, $\bar{X} \approx N\left(\theta_{0}, \theta_{0}^{2} / 30\right)$, so that the rejection region can be determined.
4. Let the independent random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ be such that we have the following linear model:

$$
Y_{i}=\alpha+\beta x_{i}+\epsilon_{i}
$$

for $i=1, \ldots, n$, where ϵ_{i} are i.i.d. normal random variables such that $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$. Let $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ be the model in the matrix formalism. After we collected a sample of size $n=42$, we have that:

$$
\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}=\left(\begin{array}{cc}
0.03 & -0.015 \\
-0.015 & 0.04
\end{array}\right)
$$

Furthermore, we know that the least squares estimate is $\hat{\boldsymbol{\beta}}^{\top}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=(1.90,0.65)$ and that the residual sum of squares $\|\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}=160$.
(a) [8pt] Compute the 95% confidence intervals for β_{0} and β_{1} Solution:
We know that:

$$
T_{0}:=\frac{\hat{\beta}_{0}-\beta_{0}}{\sqrt{\hat{\sigma}^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{1,1}^{-1}}} \sim t(42-2)=t(40)
$$

and

$$
T_{1}:=\frac{\hat{\beta}_{1}-\beta_{1}}{\sqrt{\hat{\sigma}^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{2,2}^{-1}}} \sim t(42-2)=t(40)
$$

where $\hat{\sigma}^{2}=\|\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2} / 40$. With the given data:

$$
\hat{\sigma}^{2}=160 / 40=4
$$

So that a 95% CI for β_{0} :

$$
1.90 \pm t_{0.975}(40) \sqrt{\hat{\sigma}^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{1,1}^{-1}}=1.90 \pm 2.021 \sqrt{0.12}=[1.20,2.60]
$$

$\beta_{1}:$

$$
0.65 \pm t_{0.975}(40) \sqrt{\hat{\sigma}^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{2,2}^{-1}}=0.65 \pm 2.021 \sqrt{0.16}=[-0.16,1.46]
$$

and a $99 \% \mathrm{CI}$ for β_{0} :

$$
1.90 \pm t_{0.995}(40) \sqrt{\hat{\sigma}^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{1,1}^{-1}}=1.90 \pm 2.74 \sqrt{0.12}=[0.95,2.85]
$$

for β_{1} :

$$
0.65 \pm t_{0.995}(40) \sqrt{\hat{\sigma}^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)_{2,2}^{-1}}=0.65 \pm 2.74 \sqrt{0.16}=[-0.45,1.75]
$$

(b) $[10 \mathrm{pt}]$ Consider the test:

$$
\begin{cases}H_{0}: & \beta_{0}=2, \\ H_{1}: & \beta_{0} \neq 2 .\end{cases}
$$

Will H_{0} be rejected at a significance level of 5% ? And at a significance level of 1% ?

Solution:

By duality of two sided test and CI, from the previous point, we do not reject the H_{0} at both 5% and 1% since $2 \in \mathrm{CI}$ in both cases.
(c) [7pt] Under the previous H_{0}, it holds that $\mathbb{P}\left(\hat{\beta}_{0}>1.90\right)=0.61$ and that $\mathbb{P}\left(\hat{\beta}_{0}<1.90\right)=0.39$. For which values of the significance level α, the null hypothesis H_{0} will be rejected with the given data?

Solution:

Since from the previous points, under H_{0}, the distribution of $\hat{\beta}_{0}$ is symmetric around 2 , we have that the p value of the two sided test is $p=2 \mathbb{P}\left(\hat{\beta}_{0}<1.90\right)=0.78$. So that H_{0} will be rejected for any $\alpha>0.78$.

