Statistiek (WISB263)

Sketch of Solutions (Final Exam)

January 30, 2017

Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1. (The exam is an *open-book* exam: notes and book are allowed. The scientific calculator is allowed as well). The maximum number of points is 100. Points distribution: 25-20-30-25

1. Given two parameters a > 0 and k > 0, let $\mathbf{X} = \{X_1, \ldots, X_n\}$ be a random sample of n i.i.d. observations sampled from the random variable X with density function:

$$f_X(x;a,k) \coloneqq \begin{cases} k e^{-k(x-a)} & x \ge a, \\ 0 & x < a \end{cases}$$

(a) (8pt) Find sufficient statistics for a, k and for the couple (a, k). **Solution**: We can write the likelihood of the sample as:

$$L(\mathbf{X}; a, k) = k^n e^{-k \sum_{i=1}^n X_i} e^{nka} \mathbf{1}(X_{(1)} \ge a)$$

By the factorization theorem, we have the following sufficient statistics:

$$(X_{(1)}, \sum_{i=1}^{n} X_{i}) \text{ for } (a, k) \quad [\text{e.g. } h(\boldsymbol{X}) = 1, g(T(\boldsymbol{X}), k, a) = L(\boldsymbol{X}; a, k)]$$
$$X_{(1)} \text{ for } a, \quad [\text{e.g. } h(\boldsymbol{X}) = k^{n} e^{-k \sum_{i=1}^{n} X_{i}}, g(T(\boldsymbol{X}), k, a) = e^{nka} \mathbf{1}(X_{(1)} \ge a)]$$
$$\sum_{i=1}^{n} X_{i} \text{ for } k, \quad [\text{e.g. } h(\boldsymbol{X}) = e^{nka} \mathbf{1}(X_{(1)} \ge a), g(T(\boldsymbol{X}), k, a) = k^{n} e^{-k \sum_{i=1}^{n} X_{i}}]$$

(b) (5pt) Determine, in case it exists, the maximum likelihood estimator of a in case k is known. Solution: Sin

$$L(\mathbf{X}; a, k) \propto e^{nka} \mathbf{1}(X_{(1)} \ge a)$$

the likelihood is null for $X_{(1)} < a$ and increasing in a for $X_{(1)} \ge a$, it follows that $\hat{a}_{MLE} = X_{(1)}$.

(c) (5pt) Determine, in case it exists, the maximum likelihood estimator of k in case a is known. Solution:

Provided that $X_{(1)} \ge a$, it follows that $na - \sum_{i=1}^{n} X_i \le 0$. Therefore

$$L(\mathbf{X}; a, k) \propto e^{k(na - \sum_{i=1}^{n} X_i) + n \log k} =: f(k; a)$$

and for a fixed a, we have to maximize in k the positive, continuous and differentiable function $\log f(k;a)$. Since there is only one critical point and since $\frac{d^2}{dk^2} \log f(k) < 0$, it follows that:

$$\hat{k}_{MLE} = \frac{n}{\sum_{i=1}^{n} X_i - na}$$

(d) (7pt) Determine, in case it exists, the maximum likelihood estimator of the couple (a, k). Solution:

Let us consider k > 0, $a \le X_{(1)}$:

$$\begin{split} L(\boldsymbol{X}; a, k) &= k^n e^{-k \sum_{i=1}^n X_i} e^{nka} \le k^n e^{-k \sum_{i=1}^n X_i + kn X_{(1)}} = e^{k(nX_{(1)} - \sum_{i=1}^n X_i) + n\log k} = f(k; X_{(1)}) \le f(\tilde{k}; X_{(1)}) \\ \text{where } \tilde{k} &= \frac{n}{\sum_{i=1}^n X_i - nX_{(1)}}. \text{ Therefore } \left(\frac{n}{\sum_{i=1}^n X_i - nX_{(1)}}, X_{(1)}\right) \text{ is the MLE of } (k, a). \end{split}$$

2. We consider the following three random samples of size 100:

$$\mathbb{X}_i \coloneqq \{X_{i,1}, X_{i,2}, \dots X_{i,100}\}$$

with $i \in \{1, 2, 3\}$. Each sample \mathbb{X}_i consists of i.i.d. normal random variables, such that $X_{i,j} \sim N(50, \sigma_i^2)$ for any $j \in \{1, \ldots, 100\}$. Moreover the samples are independent (i.e. $X_{i,j} \perp X_{\ell m}$, for any $i \neq \ell$). We want to test:

$$\begin{cases} H_0: & \sigma_1^2 = \sigma_2^2 = \sigma_3^2, \\ H_1: & \text{the variances are not equal} \end{cases}$$

(a) [10pt] Show that the Generalized Likelihood Ratio Test (GLRT) statistic Λ is such that:

$$-2\log\Lambda = 300\log\left(\frac{1}{3}\sum_{i=1}^{3}s_{i}^{2}\right) - 100\sum_{i=1}^{3}\log s_{i}^{2}$$

where $s_i^2 \coloneqq 1/100 \sum_{j=1}^{100} (X_{i,j} - 50)^2$, with $i \in \{1, 2, 3\}$. Solution:

The likelihood can be written as:

$$L(\sigma_1^2, \sigma_2^2, \sigma_3^2) = \prod_{i=1}^3 \prod_{j=1}^{100} \frac{1}{(2\pi\sigma_i^2)^{1/2}} \exp\left(-\frac{1}{2\sigma_i^2} (X_{i,j} - 50)^2\right) = \frac{C}{(\sigma_1^2 \sigma_2^2 \sigma_3^2)^{50}} e^{-50\left(\frac{S_1^2}{\sigma_1^2} + \frac{S_2^2}{\sigma_2^2} + \frac{S_3^2}{\sigma_3^2}\right)}$$

and the log–likelihood is:

$$\ell(\sigma_1^2, \sigma_2^2, \sigma_3^2) = \log(C) - 50 \sum_{i=1}^3 \log \sigma_i^2 - 50 \sum_{i=1}^3 \frac{S_i^2}{\sigma_i^2}$$

By definition of GLRT statistic, we have:

$$\log \Lambda = \max_{\sigma^2} \ell(\sigma^2, \sigma^2, \sigma^2) - \max_{\sigma_1^2, \sigma_2^2, \sigma_3^2} \ell(\sigma_1^2, \sigma_2^2, \sigma_3^2)$$

By standard calculations we find that:

$$\hat{\sigma}^2 \coloneqq \operatorname{argmax}_{\sigma^2} \ell(\sigma^2, \sigma^2, \sigma^2) = \frac{1}{3} \sum_{i=1}^3 S_i^2$$

and that

$$(\hat{\sigma}_1^2, \hat{\sigma}_2^2, \hat{\sigma}_3^2) \coloneqq \operatorname{argmax}_{\sigma_1^2, \sigma_2^2, \sigma_3^2} \ell(\sigma_1^2, \sigma_2^2, \sigma_3^2) = (S_1^2, S_2^2, S_3^2)$$

Hence

$$-2 \log \Lambda = 2(\ell(\hat{\sigma}_1^2, \hat{\sigma}_2^2, \hat{\sigma}_3^2) - \ell(\hat{\sigma}^2, \hat{\sigma}^2, \hat{\sigma}^2))$$

= $300 \log\left(\frac{1}{3}\sum_{i=1}^3 S_i^2\right) - 100 \sum_{i=1}^3 \log S_i^2$

(b) [10pt] If the collected data $\mathbf{x}_i = \{x_{i,1}, \dots, x_{i,100}\}$, with $i \in \{1, 2, 3\}$, are such that:

$$\sum_{j=1}^{100} x_{1,j} = 5040, \qquad \sum_{j=1}^{100} x_{2,j} = 4890, \qquad \sum_{j=1}^{100} x_{3,j} = 4920,$$

$$\sum_{j=1}^{100} x_{1,j}^2 = 264200, \qquad \sum_{j=1}^{100} x_{2,j}^2 = 250000, \qquad \sum_{j=1}^{100} x_{2,j}^2 = 251700$$

perform a GLRT at $\alpha = 0.05$ level of significance (you can consider the sample size n = 100 large enough for applying large sample results).

Solution:

By asymptotic results we have that $-2\log\Lambda\approx\chi_2^2.$ For the given data:

$$-2\log\Lambda = 0.283 < \chi_2^2(0.05)$$

so that ca cannot reject the null hypothesis at the 5% level of significance.

3. The life times (in hours) of n = 30 batteries have been measured from a company interested in the performances of a new product. In this way, a sample $\mathbb{X} = \{X_1, \ldots, X_{30}\}$ of i.i.d. random variable X_j , representing the life time of the *j*-th battery, has been collected. In the following table the empirical cumulative distribution function $\hat{F}_{30}(x)$ (i.e. $\hat{F}_n(x) = 1/n \sum_{j=1}^n \mathbf{1}(X_j \leq x)$) is reported:

x (in hours)	1	2	4	6	8	11	13	27	29	42
$\hat{F}_{30}(x)$	7/30	12/30	16/30	20/30	23/30	26/30	27/30	28/30	29/30	1

(a) [6pt] Determine an estimator of the probability that the battery produced lasts more than 9 hours (i.e. $\mathbb{P}(X > 9)$).

Solution:

We want to estimate $p := \mathbb{P}(X > 9)$. A non-parametric unbiased estimator is given by:

$$T = 1 - \hat{F}_{30}(9) = 1 - \hat{F}_{30}(8) = 7/30$$

(b) [8pt] Derive an approximated 95% confidence interval for the probability that the battery produced lasts more than 9 hours.

Solution:

Since

$$T \approx N(p, p(1-p)/30)$$

A 95% CI for p is given by (0.082, 0.394).

Due to previous statistical analyses performed on similar batteries, we can assume now that the sample is a collection of 30 i.i.d. exponential random variable with expected value θ (i.e. $X_i \sim \text{Exp}(1/\theta)$).

 (c) [8pt] Under these parametric assumptions, calculate the maximum likelihood estimator of the probability that the battery produced lasts more than 9 hours.
Solution:

We want to estimate $p(\theta) := \mathbb{P}_{\theta}(T > 9) = e^{-9/\theta}$. Since for an exponential distribution $\hat{\theta}_{MLE} = \bar{X}$, by the invariance principle, it follows that $\hat{p}_{MLE} = e^{-9/\bar{X}}$.

(d) [8pt] If we denote with $p(\theta)$ the probability that the battery produced lasts more than 9 hours, propose a test for testing the hypotheses:

$$\begin{cases} H_0: & p = 0.32 \\ H_1: & p = 0.16. \end{cases}$$

at the α level of significance.

Solution:

Since the H_0 and H_1 are simple hypotheses, we can use the Neyman Pearson Lemma in order to construct the most powerful test with the α level of significance. Note that p = 0.16 iff $\theta = -9/\log 0.16 =: \theta_0$ and p = 0.32 iff $\theta = -9/\log 0.32 =: \theta_1$. The LRT statistics can be written as:

$$\Lambda = \frac{L(\theta_0)}{L(\theta_1)} = \exp\left(n\bar{X}(1/\theta_1 - 1/\theta_0)\right)$$

so that the test rejects for $\bar{X} < k$. By the CLT, $\bar{X} \approx N(\theta_0, \theta_0^2/30)$, so that the rejection region can be determined.

4. Let the independent random variables Y_1, Y_2, \ldots, Y_n be such that we have the following linear model:

$$Y_i = \alpha + \beta x_i + \epsilon_i$$

for i = 1, ..., n, where ϵ_i are i.i.d. normal random variables such that $\epsilon_i \sim N(0, \sigma^2)$. Let $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ be the model in the matrix formalism. After we collected a sample of size n = 42, we have that:

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} = \begin{pmatrix} 0.03 & -0.015 \\ -0.015 & 0.04 \end{pmatrix}$$

Furthermore, we know that the least squares estimate is $\hat{\boldsymbol{\beta}}^{\top} = (\hat{\beta}_0, \hat{\beta}_1) = (1.90, 0.65)$ and that the residual sum of squares $\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2 = 160$.

 (a) [8pt] Compute the 95% confidence intervals for β₀ and β₁
Solution: We know that:

$$T_0 \coloneqq \frac{\hat{\beta}_0 - \beta_0}{\sqrt{\hat{\sigma}^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})_{1,1}^{-1}}} \sim t(42 - 2) = t(40)$$

and

$$T_1 \coloneqq \frac{\beta_1 - \beta_1}{\sqrt{\hat{\sigma}^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})_{2,2}^{-1}}} \sim t(42 - 2) = t(40)$$

where $\hat{\sigma}^2 = \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2/40$. With the given data:

$$\hat{\sigma}^2 = 160/40 = 4$$

So that a 95% CI for β_0 :

$$1.90 \pm t_{0.975} (40) \sqrt{\hat{\sigma}^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})_{1,1}^{-1}} = 1.90 \pm 2.021 \sqrt{0.12} = [1.20, 2.60]$$

 β_1 :

$$0.65 \pm t_{0.975}(40)\sqrt{\hat{\sigma}^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})_{2,2}^{-1}} = 0.65 \pm 2.021\sqrt{0.16} = [-0.16, 1.46],$$

and a 99% CI for β_0 :

$$1.90 \pm t_{0.995}(40)\sqrt{\hat{\sigma}^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})_{1,1}^{-1}} = 1.90 \pm 2.74\sqrt{0.12} = [0.95, 2.85]$$

for β_1 :

$$0.65 \pm t_{0.995}(40)\sqrt{\hat{\sigma}^2 (\mathbf{X}^{\mathsf{T}} \mathbf{X})_{2,2}^{-1}} = 0.65 \pm 2.74\sqrt{0.16} = [-0.45, 1.75],$$

(b) [10pt] Consider the test:

$$\begin{cases} H_0: & \beta_0 = 2, \\ H_1: & \beta_0 \neq 2. \end{cases}$$

Will H_0 be rejected at a significance level of 5%? And at a significance level of 1%? **Solution**:

By duality of two sided test and CI, from the previous point, we do not reject the H_0 at both 5% and 1% since $2 \in CI$ in both cases.

(c) [7pt] Under the previous H_0 , it holds that $\mathbb{P}(\hat{\beta}_0 > 1.90) = 0.61$ and that $\mathbb{P}(\hat{\beta}_0 < 1.90) = 0.39$. For which values of the significance level α , the null hypothesis H_0 will be rejected with the given data? Solution:

Since from the previous points, under H_0 , the distribution of $\hat{\beta}_0$ is symmetric around 2, we have that the *p* value of the two sided test is $p = 2\mathbb{P}(\hat{\beta}_0 < 1.90) = 0.78$. So that H_0 will be rejected for any $\alpha > 0.78$.