
Statistiek (WISB361)

Retake exam
July 20, 2015

Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1.

The exam is open–book and the use of the calculator is permitted.
The maximum number of points is 100.
Points distribution: 25–20–15–20–20.

1. Suppose that X1, X2, . . . , Xn, are independent random variables with

Xi ∼ N(i θ, 1)

for i = 1, . . . , n.

(a) [7pt] Find the maximum likelihood estimator θ̂MLE of θ
Solution:
The likelihood can be written as:

lik(θ) = f(x1, . . . , xn|θ) =
1

(2π)n/2
exp

{
−1

2

n∑
i=1

(xi − iθ)2
}

so that the log–likelihood `(θ) is:

`(θ) = −n
2

log(2π)− 1

2

n∑
i=1

(xi − iθ)2

The score equation for θ is:

∂θ`(θ) =

n∑
i=1

i(xi − iθ) =

n∑
i=1

ixi − θ
n∑
i=1

i2

Hence, ∂θ`(θ) = 0 iff

θ =

∑n
i=1 ixi∑n
i=1 i

2

and, since ∂2θ`(θ) = −
∑n
i=1 i

2 < 0, we finally have:

θ̂MLE =

∑n
i=1 iXi∑n
i=1 i

2

(b) [7pt] Find the variance of θ̂MLE .
Solution:
Since Xi are independent RV, we have:

Var(θ̂MLE) =
1

(
∑n
i=1 i

2)
2

n∑
i=1

i2Var(Xi) =
1

(
∑n
i=1 i

2)

(c) [6pt] Compare the variance calculated in (b) with the Cramer–Rao lower bound for an unbiased estimator

of θ. Is θ̂MLE an efficient estimator?
Solution:
The total Fisher information I(θ) is:

I(θ) = −Eθ(∂2θ`(θ))



Since

∂2θ`(θ) = −
n∑
i=1

i2

the Cramer–Rao lower bound for an unbiased estimator T of θ is:

Var(T ) ≥ 1∑n
i=1 i

2

We have that θ̂MLE is unbiased:

E(θ̂MLE) =

∑n
i=1 iE(Xi)∑n

i=1 i
2

= θ

∑n
i=1 i

2∑n
i=1 i

2
= θ

Since, the Cramer–Rao lower bound is attained, then θ̂MLE is an efficient estimator for θ.

Suppose that we have now another sample Y1, . . . , Yn of i.i.d. random variables Yi ∼ N(µ, 1), with i = 1, . . . , n
and where µ ∈ R is an unknown parameter. Suppose we do not observe the exact values of Yi but only their
signs, i.e., we only observe Zi = sgn(Yi) for i = 1, . . . , n.

(d) [5pt] Obtain the maximum likelihood estimator of µ
Solution:
In we define

Vi :=
1 + Zi

2

Vi are i.i.d. Bernoulli RV with parameter p = P(Yi > 0) = P(Yi − µ > −µ) = 1− Φ(−µ) = Φ(µ), where
Φ(·) is the CDF of a standard normal RV. Therefore, the likelihood can be written as:

lik(µ) = Φ(µ)
∑n

i=1 Vi(1− Φ(µ))n−
∑n

i=1 Vi

By differentiating the log–likelihood, one finds the usual MLE estimator for i.i.d. binomial observations:

Φ̂(µ)MLE =
1

n

n∑
i=1

Vi =
1 + Z̄n

2

Bt the invariance principle:

µ̂MLE = Φ−1(
1 + Z̄n

2
)

2. Let us suppose to have only one observation y from the discrete random variable Y , such that Y ∈
{10, 20, 30, 40, 50, 60}. The probability mass function (pmf) p(y|θ) of Y depends on the unknown param-
eter θ belonging to the discrete parameter space Ω := {1, 2, 3, 4, 5, 6}. The pmf p(y|θ) is given by the following
table:

y 10 20 30 40 50 60

p(y|θ = 1) 0.5 0.2 0.1 0.1 0.1 0
p(y|θ = 2) 0.2 0.5 0.1 0.1 0.1 0
p(y|θ = 3) 0.1 0.2 0.5 0.1 0.1 0
p(y|θ = 4) 0.1 0.1 0.2 0.5 0.1 0
p(y|θ = 5) 0.1 0.1 0.1 0.2 0.5 0
p(y|θ = 6) 0 0.1 0.1 0.1 0.2 0.5

(a) [7pt] Find the maximum likelihood estimator θ̂MLE of θ.
Solution:
By looking at the table we find:

θ̂MLE = Y/10

2



(b) [4pt] Is θ̂MLE unbiased?
Solution:
If we calculate for θ = 1 the expected value of θ̂MLE , from the table we have:

Eθ=1(θ̂MLE) = 1/10Eθ=1(Y ) = 2.1 6= 1

Thus, θ̂MLE is biased.

(c) [5pt] Suppose we want to test: {
H0 : θ = 1,
H1 : θ 6= 1.

at α = 0.03 level of significance. Propose a test statistic and find the rejection region of the test.
Solution:
We use the generalized likelihood–ratio test statistics:

λ =
lik(θ0)

lik(θ̂MLE)
=
p(y|θ = 1)

p(y|θ̂MLE)

The possible values of this test statistics are:

y = 10 y = 20 y = 30 y = 40 y = 50 y = 60

λ 1 0.4 0.2 0.2 0.2 0

We reject H0 for small values of λ. Since we have P(λ < 0.4|θ = 1) = 0.3, it follows that we reject H0

at α = 0.03 level of significance if λ < 0.4. Therefore, we reject H0 for any y in the rejection region:
B = {30, 40, 50, 60}.

(d) [4pt] In case the observation y = 20, calculate an estimate of Var(θ̂MLE).
Solution:
If y = 20, then θ̂MLE = 2. Hence,

Eθ=2(θ̂MLE) = 0.2 + 1 + 0.3 + 0.4 + 0.5 + 0 = 2.4

and
Eθ=2(θ̂2MLE) = 7.2

Therefore, an estimate for the variance is:

V̂ar(θ̂MLE) = 7.2− 2.42 = 1.44

3. Let Y = {Y1, . . . Yn} a random sample of i.i.d. random variables Yi with probability density function:

f(y|θ) = (1 + θ y)/2

with −1 < y < 1 and depending on the parameter θ such that −1 < θ < 1.

(a) [7pt] Derive the rejection region B of the general most powerful test with significance α for testing:{
H0 : θ = 0,
H1 : θ = 1/2.

Solution:
We can write the likelihood for a realization of the sample as:

lik(θ) =

n∏
i=1

1

2
(1 + θyi) = 2−n

n∏
i=1

(1 + θyi)

so that the likelihood ratio test statistics rejects for:

lik(θ = 0)

lik(θ = 1/2)
=

1∏n
i=1(1 + θyi)

< k
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that is
n∏
i=1

(1 + θyi) > k−1

A likelihood–ratio rejection region B will be of the form:

B = {(y1, y2, . . . , yn) :

n∏
i=1

(1 + θyi) > kα}

with kα such that P((Y1, Y2, . . . , Yn) ∈ B|θ = 0) = α. By Neyman–Pearson Lemma, B is the rejection
region of the most powerful test for testing the hypotheses at level of significance at most α.

(b) [4pt] When n = 1, find the critical value for the test statistics of the test in point (a) such that the
significance α = 0.05.
Solution:
When n = 1

B = {y : (1 + θy) > k0.05}

so that the test rejects for y > 2(k0.05 − 1) = k̃, with k̃ such that:

P(Y ∈ B|θ = 0) =

∫ 1

k̃

1

2
dy =

1− k̃
2

= 0.05

It follows that k̃ = 0.9. Thus, the test rejects when y > 0.9.

(c) [4pt] When n = 1, find the power π of the test developed in point (b).
Solution:

π = P(Y ∈ B|θ = 1) = P(Y > 0.9|θ = 1) =

∫ 1

0.9

1

2

(
1 +

y

2

)
dy = 0.074

4. Two different types of injection–molding machines are used to form plastic parts. A part is considered
defective if it has excessive shrinkage or is discolored. Two random samples, each of size 300, are selected, and
15 defective parts are found in the sample from machine 1, while 8 defective parts are found in the sample
from machine 2.

(a) [9pt] Test the hypothesis that both machines produce the same fraction of defective parts (i.e. p1 = p2),
at α = 0.05 level of significance (You can consider the sample large enough for applying large sample
results).
Solution:
The parameters of interest are the proportion of defective parts of the two machines (p1 and p2), so that
we want to test: {

H0 : p1 = p2
H1 : p1 6= p2

at level α = 0.05 of significance. The two samples collected X = {X1, . . . , X300} and Y = {Y1, . . . , Y300}
are independent and such that Xi are i.i.d. RV such that Xi ∼ Ber(p1) and Yi are i.i.d. RV such that

Yi ∼ Ber(p2). Thus Z1 :=
∑300
i=1Xi ∼ Bin(p1, 300) and Z2 :=

∑300
i=1 Yi ∼ Bin(p2, 300). If we pose

p̂1 = Z1/300 and p̂2 = Z2/300 we can define the test statistics:

Z =
p̂1 − p̂2 − (p1 − p2)√
p1(1−p1)

300 + p2(1−p2)
300

Under H0, p1 = p2 = p, so that:

Z =
p̂1 − p̂2√
p(1−p)
150
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and Z ≈ N(0, 1). Since we do not know p, we can estimate p using the pooled estimator:

p̂ =
1

n1 + n2
(n1p̂1 + n2p̂2)

that is the proportion of successes in the two samples combined. Thus, the test statistics is

Z =
p̂1 − p̂2√
p̂(1−p̂)
150

=
p̂1 − p̂2
σp̂1−p̂2

which is Z ≈ N(0, 1) for large samples. With our data:

p̂1 = 0.05, p̂2 = 0.0267, p̂ = 0.0383, σp̂1−p̂2 = 0.015

and the realization of the test statistics is z = 1.49. Since the rejection region of the two–sided approx-
imated test is B = {z : |z| ≥ z0.025}, with the standard normal quantile z0.025 u 1.96, then z /∈ B.
Therefore we do not reject H0 at 0.05 level of significance.

(b) [4pt] Find the (approximated) p–value for the test of point (a).
Solution:

p–value ≈ 2(1− P(Z < 1.49|H0)) = 2(1− Φ(1.49)) = 0.14

Suppose now that p1 = 0.05 and p2 = 0.01.

(c) [7pt] What is the (approximated) power of the test?
Solution:
Under H1, Z̃ ≈ N(0, 1), with:

Z̃ =
p̂1 − p̂2 − (p1 − p2)√
p1(1−p1)

300 + p2(1−p2)
300

=
p̂1 − p̂2 − (p1 − p2)

σ

where p1 = 0.05 and p2 = 0.01 and σ = Therefore:

π = P(Z ∈ B|H1) = 1− Φ ((z0.025σp̂1−p̂2 − (p1 − p2))/σ) + Φ ((−z0.025σp̂1−p̂2 − (p1 − p2))/σ)

where we rewrote the rejection region as B = {|p̂1 − p̂2| ≥ z0.025σp̂1−p̂2}. With our data:

π ≈ 0.81

5. Consider the linear model Y = Xβ + e, where X is the n × p design matrix, and e is the vector whose
components ei are i.i.d. random variables with Eei = 0 and Var(ei) = σ2. The least squares estimator of

β is given by β̂LS = (X>X)−1X>Y. Let P := X(X>X)−1X> and Q := I − X(X>X)−1X> , where I is

the n–dimensional identity matrix. Let Ŷ := Xβ̂LS be the fitted model and ê := Y − Ŷ the vector of the
residuals.

(a) [7pt] Knowing that Ŷ = Pe + Xβ, ê = Qe and that PQ is the zero matrix, prove that Cov(Ŷ, ê) =

E(Ŷê>).
Solution:
Given two random vectors U and V, by the definition of covariance, we have:

Cov(U,V) = E(U− E(U))(V− E(V))> = E(UV>)− E(U)(E(V)>

In our case, U = Ŷ and V = ê = Qe. Since E(e) = 0, it follows that E(ê) = QE(e) = 0. Hence, the
claim follows.

5



(b) [8pt] Suppose now that we add an additional row vector (i.e. a vector of dimensions 1× p) of variables

xn+1 to the design matrix X. The corresponding variable Yn+1 is then predicted by Ŷn+1 = xn+1β̂LS .

Calculate the expectation E(Ŷn+1) and the variance Var(Ŷn+1) of Ŷn+1.
Solution:

Ŷn+1 = xn+1β̂LS =

p∑
i=1

xn+1,i β̂
(i)
LS

Hence,

E(Ŷn+1) =

p∑
i=1

xn+1,i E(β̂
(i)
LS) =

p∑
i=1

xn+1,i βi = xn+1β

with βi the components of the vector β.
As regards the variance:

Var(Ŷn+1) =

p∑
i=1

x2n+1,i Var(β̂
(i)
LS) +

∑
i<j

xn+1,ixn+1,jCov(β̂
(i)
LS , β̂

(j)
LS)

with Cov(β̂
(i)
LS , β̂

(j)
LS) = σ2(X>X)−1ij .

(c) [5pt] Suppose we have the additional information that ei ∼ N(0, σ2) with known variance σ2. Construct
a (1− α)–confidence interval for xn+1β.
Solution:
Since

Ŷn+1 ∼ N(E(Ŷn+1),Var(Ŷn+1))

the CI for Yn+1 easily follows.
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