Statistiek (WISB361)

Midterm exam

April 19, 2013
Schrijf uw naam op elk in te leveren vel. Ook schrijf uw studentnummer op blad 1.
The maximum number of points is 100 . Points distribution: 20-37-23-20

1. A physical quantity is independently measured two times using two different instruments with two known different precisions. We can model this experiment with two independent random samples $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ and $\mathbf{Y}=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ of size m and n respectively. We assume that X_{i} are i.i.d. normal random variables with mean μ and standard deviation σ_{X} and that Y_{i} are i.i.d. normal random variables with mean μ and standard deviation σ_{Y}. We assume that σ_{X} and σ_{Y} are known and we want to estimate μ. We consider the following estimator for μ :

$$
T=a \bar{X}_{m}+(1-a) \bar{Y}_{n}, \quad a \in \mathbb{R}
$$

where $\bar{X}_{m}=1 / m \sum_{i=1}^{m} X_{i}$ and $\bar{Y}_{n}=1 / n \sum_{i=1}^{n} Y_{i}$.
(a) [5pt] Calculate the expected value and the variance of T.

Solution:

$$
\begin{aligned}
\mathbb{E}(T) & \left.=a \mathbb{E}\left(\bar{X}_{m}\right)+(1-a) E(\bar{Y}+n)=a \mu\right)+(1-a) \mu=\mu \\
\operatorname{Var}(T) & =a^{2} \operatorname{Var}\left(\bar{X}_{m}\right)+(1-a)^{2} \operatorname{Var}\left(\bar{Y}_{n}\right)=a^{2} \frac{\sigma_{X}^{2}}{m}+(1-a)^{2} \frac{\sigma_{Y}^{2}}{n}
\end{aligned}
$$

(b) [10pt] Find a such that the mean squared error $\operatorname{MSE}(a)$ is minimized. For this value of a calculate the variance of T.
Solution: Since T is unbiased, $\operatorname{MSE}(a)=\operatorname{Var}(T)$. Hence,

$$
\operatorname{MSE}(a)=a^{2}\left(\frac{\sigma_{X}^{2}}{m}+\frac{\sigma_{Y}^{2}}{n}\right)-2 a \frac{\sigma_{Y}^{2}}{n}+\frac{\sigma_{Y}^{2}}{n}=f(a)+\frac{\sigma_{Y}^{2}}{n}
$$

In order to minimize $\operatorname{MSE}(a)$ we have to minimize $f(a)$. Therefore, the solution of $f(a)^{\prime}=0$ is

$$
\bar{a}=\frac{\frac{\sigma_{Y}^{2}}{n}}{\frac{\sigma_{X}^{2}}{m}+\frac{\sigma_{Y}^{2}}{n}}
$$

Since $f^{\prime \prime}(a)>0 \forall a, \bar{a}$ is the minimizer.
(c) [5pt] Give the distribution of T for the value of a found in (b).

Solution: We have:

$$
1-\bar{a}=\frac{\frac{\sigma_{X}^{2}}{m}}{\frac{\sigma_{X}^{2}}{m}+\frac{\sigma_{Y}^{2}}{n}}
$$

For $a=\bar{a}$ we have:

$$
\begin{aligned}
\operatorname{Var}(T) & =\bar{a}^{2} \frac{\sigma_{X}^{2}}{m}+(1-\bar{a})^{2} \frac{\sigma_{Y}^{2}}{n} \\
& =\frac{\frac{\sigma_{X}^{2} \sigma_{Y}^{4}}{m n^{2}}+\frac{\sigma_{Y}^{2} \sigma_{X}^{4}}{n m^{2}}}{\left(\frac{\sigma_{X}^{2}}{m}+\frac{\sigma_{Y}^{2}}{n}\right)^{2}} \\
& =\frac{\frac{\sigma_{Y}^{2}}{n} \frac{\sigma_{X}^{2}}{m}}{\frac{\sigma_{X}^{2}}{m}+\frac{\sigma_{Y}^{2}}{n}}
\end{aligned}
$$

therefore $T \sim N\left(\mu, \bar{\sigma}^{2}\right)$, where $\bar{\sigma}^{2}=\frac{\frac{\sigma_{Y}^{2}}{n} \frac{\sigma_{X}^{2}}{m}}{\frac{\sigma_{X}^{2}}{m}+\frac{\sigma_{Y}^{2}}{n}}$
2. Consider the sample \mathbf{X}_{n} of n i.i.d. random variables distributed with density function:

$$
f(x \mid \theta)=\frac{1}{\theta^{2}} x \exp \left\{-\frac{x}{\theta}\right\}
$$

with $\theta>0$ and $x>0$.
(a) [5pt] Write the likelihood function $\operatorname{lik}(\theta)$ for the realization $\mathbf{x}_{n}=\left\{x_{a}, \ldots, x_{n}\right\}$ of the sample.

Solution:

$$
\operatorname{lik}(\theta)=\left(\prod_{i}^{n} x_{i}\right) \frac{1}{\theta^{2 n}} \exp \left\{-\sum_{i=1}^{n} \frac{x_{i}}{\theta}\right\}
$$

(b) $[7 \mathrm{pt}]$ Find a sufficient statistic for θ.

Solution:

By the expression of $l i k(\theta)$ and by the Factorization Theorem $\left(h(\mathbf{x})=\prod_{i}^{n} x_{i}\right.$ and $\left.g(\mathbf{x} \mid \theta)=\theta^{-2 n} \exp \left(-\sum_{i=1}^{n} x_{i} / \theta\right)\right)$, it follows that $T(\mathbf{x})=\sum_{i=1}^{n} x_{i}$ is a sufficient statistic for θ.
(c) [10pt] Given the realization \mathbf{x}_{n}, find the maximum likelihood estimator $\hat{\theta}_{M L E}$ for θ. Moreover, calculate the Fisher information $I(\theta)$

Solution:

The log-likelihood is:

$$
\ell(\theta)=-2 n \log (\theta)-\frac{\sum_{i=1}^{n} x_{i}}{\theta}+\sum_{i=1}^{n} \log \left(x_{i}\right)
$$

and

$$
\ell^{\prime}(\theta)=-\frac{2 n}{\theta}+\frac{\sum_{i=1}^{n} x_{i}}{\theta^{2}}
$$

Hence:

$$
\hat{\theta}_{M L E}=\frac{\sum_{i=1}^{n} x_{i}}{2 n}
$$

being $\ell^{\prime \prime}\left(\hat{\theta}_{M L E}\right)<0$.

$$
I(\theta)=-\mathbb{E}\left(\frac{\partial^{2}}{\partial \theta^{2}} \log f(x \mid \theta)\right)=-\frac{2}{\theta^{2}}+\frac{2 \mathbb{E}(X)}{\theta^{3}}=-\frac{2}{\theta^{2}}+\frac{2 \mathbb{E}(X)}{\theta^{3}}=\frac{2}{\theta^{2}}
$$

by double integration by parts $(\mathbb{E}(X)=2 \theta)$.
Consider the observed sample \mathbf{x}_{30} of $n=30$ observations:

$$
\begin{aligned}
\mathrm{x}_{30}= & \{0.56,0.47,0.30,0.60,0.22,0.41,0.76,0.38,0.08,0.29,0.57,0.97,0.81,0.87,0.36 \\
& 0.20,1.27,0.20,1.38,1.12,0.46,0.52,1.17,0.32,0.21,0.61,0.61,1.47,0.64,0.08\}
\end{aligned}
$$

we have that $\sum_{i=1}^{30} x_{i}=17.91,\left(\sum_{i=1}^{30} x_{i}\right)^{2}=320.77$ and $\left(\sum_{i=1}^{30} x_{i}\right)^{3}=5744.96$.
With respect to this sample:
(d) [5pt] calculate the value of the maximum likelihood estimator $\hat{\theta}_{M L E}$ and determine the value of the observed Fisher information $n I\left(\hat{\theta}_{M L E}\right)$.

Solution:

$$
\begin{aligned}
\hat{\theta}_{M L E} & =\frac{\sum_{i=1}^{n} x_{i}}{2 n}=\frac{17.91}{60}=0.2985 \\
n I\left(\hat{\theta}_{M L E}\right) & =\frac{8 n^{3}}{\left(\sum_{i=1} x_{i}\right)^{2}}=\frac{216000}{320.77}=673.38
\end{aligned}
$$

(e) [10pt] Give a 95% confidence interval for $\hat{\theta}_{M L E}$. (Hint: we can consider $n=30$ large enough for using asymptotic results). Moreover, in case we want to test $H_{0}: \theta=1 / 4$ against $H_{1}: \theta \neq 1 / 4$ at 5%-level of significance, can we reject the null hypothesis?

Solution:

A CI for $\hat{\theta}_{M L E}$ can be derived via normal approximation of the the distribution of the maximum likelihood estimator for θ :

$$
\hat{\theta}_{M L E} \pm z(0.025) \frac{1}{\sqrt{n I\left(\hat{\theta}_{M L E}\right)}}=0.2985 \pm \frac{1.96}{\sqrt{673.38}}=0.2985 \pm 0.0755
$$

Hence, $C I=(0.22,0.37)$.
By duality of CI and two sided Hypotheses tests, since $0.25 \in C I$ we can't reject H_{0}.
3. Let $X \sim N\left(\mu, \sigma^{2}\right)$ a random variable with $\sigma^{2}=3$. In order to test the hypothesis

$$
\begin{cases}H_{0}: & \mu=2 \\ H_{1}: & \mu=1\end{cases}
$$

a sample $\mathbf{X}=\left\{X_{1}, X_{2}, X_{3}\right\}$ of i.i.d. observations distributed as above is collected. Given the rejection region:

$$
B=\left\{\left(x_{1}, x_{2}, x_{3}\right): 2 x_{1}-2 x_{2}+x_{3}<1.2\right\}
$$

(a) [5pt] Derive the distribution of the test statistics $T(\mathbf{X})=2 X_{1}-2 X_{2}+X_{3}$.

Solution:

$$
T(\mathbf{X}) \sim N(\mu, 27)
$$

In fact X_{1}, X_{2}, X_{3} are i.i.d $N(\mu, 3)$ random variables and

$$
E(T)=\mu
$$

and

$$
\operatorname{Var}(T)=3(4+4+1)=27
$$

(b) [10pt] Calculate the significance level α of the test.

Solution:

$$
\begin{aligned}
\alpha & =\mathbb{P}\left(T \in B \mid H_{0}\right)=\mathbb{P}\left(2 X_{1}-2 X_{2}+X_{3}<1.2 \mid H_{0}\right)=\mathbb{P}\left(T<1.2 \mid H_{0}\right) \\
& =\mathbb{P}\left(\left.\frac{T-2}{\sqrt{27}}<\frac{1.2-2}{\sqrt{27}} \right\rvert\, H_{0}\right)=\mathbb{P}\left(Z<-0.15 \mid H_{0}\right) \\
& =1-\Phi(0.15)=0.44
\end{aligned}
$$

since $Z \sim N(1,0)$.
(c) $[8 \mathrm{pt}]$ Calculate the power of the test.

Solution:

$$
\begin{aligned}
1-\beta & =\mathbb{P}\left(T \in B \mid H_{1}\right)=\mathbb{P}\left(2 X_{1}-2 X_{2}+X_{3}<1.2 \mid H_{1}\right)=\mathbb{P}\left(T<1.2 \mid H_{1}\right) \\
& =\mathbb{P}\left(\left.\frac{T-2}{\sqrt{27}}<\frac{1.2-1}{\sqrt{27}} \right\rvert\, H_{1}\right)=\mathbb{P}\left(Z<0.038 \mid H_{1}\right) \\
& =\Phi(0.038)=0.516
\end{aligned}
$$

4. Suppose to have a single observation y sampled from a discrete random variable Y. The sample space of Y is $\mathcal{S}=\{1,2,3,4,5,6\}$, and its probability mass function $p(y \mid \theta)$ depends on the unknown parameter $\theta \in \Omega$, where $\Omega=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$.
The values of $p(y \mid \theta)$ are specified in the following table:

$p(y \mid \theta)$	$y=1$	$y=2$	$y=3$	$y=4$	$y=5$	$y=6$
$p\left(y \mid \theta=\theta_{1}\right)$	0.02	0.03	0.04	0.02	0.03	0.86
$p\left(y \mid \theta=\theta_{2}\right)$	0.07	0.08	0.02	0.05	0.1	0.68
$p\left(y \mid \theta=\theta_{3}\right)$	0.2	0.05	0.03	0.15	0.54	0.03

(a) [10pt] Calculate the maximum likelihood estimator $\hat{\theta}_{M L E}$ of θ.

Solution:

Since we have only one observation y :

$$
\hat{\theta}_{M L E}=\operatorname{argmax}_{\theta \in \Omega} p(y \mid \theta)
$$

Hence, from the table we have:

$$
\hat{\theta}_{M L E}= \begin{cases}\theta_{1} & y \in\{3,6\} \\ \theta_{2} & y=2 \\ \theta_{3} & y \in\{1,4,5\}\end{cases}
$$

(b) [7pt] Using the Likelihood Ratio, construct the most powerful test at 0.05-level of significance for testing:

$$
\begin{cases}H_{0}: & \theta=\theta_{1} \\ H_{1}: & \theta=\theta_{2}\end{cases}
$$

Solution:

By Neyman-Pearson Lemma, the most powerful test at α-level of significance, has rejection region of the type:

$$
\frac{p\left(y \mid \theta=\theta_{1}\right)}{p\left(y \mid \theta=\theta_{2}\right)}<k_{\alpha}
$$

where the constant k_{α} has to be determined. If we evaluate the ratio we have:

$p(y \mid \theta)$	$y=1$	$y=2$	$y=3$	$y=4$	$y=5$	$y=6$
$p\left(y \mid \theta=\theta_{1}\right)$	0.02	0.03	0.04	0.02	0.03	0.86
$p\left(y \mid \theta=\theta_{2}\right)$	0.07	0.08	0.02	0.05	0.1	0.68
$p\left(y \mid \theta=\theta_{1}\right) / p\left(y \mid \theta=\theta_{2}\right)$	0.29	0.38	2	0.4	0.3	1.26

If R is the rejection region:

$$
0.05=\mathbb{P}\left(Y \in R \mid H_{0}\right)=\mathbb{P}\left(Y \in R \mid \theta=\theta_{1}\right)=\sum_{\substack{i \in\{1, \ldots, 6\} ; \\ p\left(i \mid \theta_{1}\right) / p\left(i \mid \theta_{2}\right)<k_{0.05}}} p\left(i \mid \theta_{1}\right)
$$

From the table we see that $k_{0.05}=0.38$ and that the rejection region is $R=\{1,5\}$.
(c) $[3 \mathrm{pt}]$ Calculate the power of the test derived in point (b).

Solution:

By definition, the power π of the test is:

$$
\pi=1-\beta=\mathbb{P}\left(Y \in R \mid H_{1}\right)=\mathbb{P}\left(Y \in\{1,5\} \mid \theta=\theta_{2}\right)=0.07+0.1=0.17
$$

