(1) Let $\lambda \in \mathbb{C}$ have positive real part. Prove that the map $f : \mathbb{R} \to \mathbb{C}$ defined by $f(t) = e^{\lambda t}$ is an injective immersion whose image is not closed in \mathbb{C} . Is f an embedding?

We have $|f(t)| = e^{\operatorname{Re}(\lambda)t}$. So |f| defines a diffeomorphism of \mathbb{R} onto $(0, \infty)$ with inverse $\operatorname{Re}(\lambda) \log(t)$. This implies that f and its derivative are injective: f is an injective immersion. It is also a homeomorphism onto its image, for its inverse is the restriction of $z \in \mathbb{C} - \{0\} \mapsto \operatorname{Re}(\lambda) \log |z|$ to $f(\mathbb{R})$. This implies that f is an embedding.

(2) Show that real projective *n*-space P^n is orientable for *n* odd. Explain why P^n cannot be oriented when *n* is even.

We orient S^n as boundary of the unit ball: if we identify T_pS^n with the orthogonal complement of p in \mathbb{R}^{n+1} , then we stipulate that a basis v_1, \ldots, v_n of the latter is oriented if and only if the basis (p, v_1, \ldots, v_n) of \mathbb{R}^{n+1} has positive determinant. The antipodal map, $\iota : S^n \to S^n$, is the restriction of $-1_{n+1} : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ and the latter has determinant $(-1)^{n+1}$. So the derivative of ι at p sends (p, v_1, \ldots, v_n) to $(-p, -v_1, \ldots, -v_n)$. Hence $D_p\iota$ is orientation preserving if and only if n is odd.

We now think of P^n as obtained from the unit sphere $S^n \subset \mathbb{R}^{n+1}$ by identifying antipodal pairs. The corresponding map $f: S^n \to P^n$ is a local diffeomorphism, in particular the derivative of f at any $p \in S^n$ is an isomorphism and we have $D_p f = D_p(f\iota) = D_{-p}fD_p\iota: T_pS^n \to T_{f(p)}P^n$. We saw that for odd n, $D_p\iota$ is orientation preserving and so we may fix an orientation of $T_{f(p)}P^n$ by requiring that D_f (or $D_{-p}f$ —this does not matter) is orientation preserving. This defines an orientation on P^n .

Let now *n* be even and positive. Suppose we have succeeded in orienting P^n . Since $D_p \iota$ is orientation reversing only one of $D_p f$ and $D_{-p} f$ is orientation preserving. This singles out an element of the antipodal pair $\{p, -p\}$. We thus obtain a continuous section $g : P^n \to S^n$ of f. Since P^n is compact, so is its image $g(P^n)$. In particular, $g(P^n)$ is closed. Its complement is $-g(P^n)$ and hence also closed. So $\{g(P^n), -g(P^n)\}$ is a nontrivial splitting of S^n . This contradicts the fact that S^n is connected.

(3) Let M be a manifold, $f: M \to \mathbb{R}^2$ a C^{∞} -map and put $N := f^{-1}(0, 0)$. Let V and W be vector fields on M that lift ∂/∂_x resp. ∂/∂_y (so $D_p f(V_p) = \partial/\partial_x$ and $D_p f(W_p) = \partial/\partial_y$ for every $p \in M$).

(3a) Prove that N is a submanifold of M and that [V, W] is tangent to it (i.e., restricts to a vector field on N).

The assumption implies that for every $p \in M$, $D_p f$ is a surjection. So f is a submersion and by our form of the implicit function theorem it then follows that $N = f^{-1}(0,0)$ is a submanifold.

We give two proofs for the second part.

First proof: Choose at a point of N a coordinate chart $\kappa: U \to \mathbb{R}^m$ such that

that $\kappa_1 = f_1$ and $\kappa_2 = f_2$. So N is then given by $\kappa_1 = \kappa_2 = 0$. In terms of this chart V resp. W looks like

$$\partial/\partial x^1 + \sum_{i\geq 3} V^i(x)\partial/\partial x^i \quad \text{ resp. } \quad \partial/\partial x^2 + \sum_{i\geq 3} W^i(x)\partial/\partial x^i.$$

An easy check shows that the Lie bracket of these two vector fields involves only terms of the form $\partial/\partial x^3, \ldots, \partial/\partial x^m$ and so [V, W] is tangent to N. Second proof: Since V is a lift of $\partial/\partial x^1$ we have $V(f_1) = 1$ and $V(f_2) = 0$.

Likewise $W(f_1) = 0, W(f_2) = 1$. So $[V, W](f_1) = VW(f_1) - WV(f_1) = -W(1) = 0$ and similarly $[V, W](f_2) = 0$. This means that [V, W] is tangent to the fibers of f.

(3b) Suppose that V and W generate flows on M (that we shall denote by H resp. I). Prove that the map $\mathbb{R}^2 \times N \to M$, $(a, b, p) \mapsto I_b H_a(p)$ is a diffeomorphism. (Hint: find a formula for its inverse.)

We claim that $fH_t(p) - (t, 0)$ is constant equal to f(p). For if we differentiate the lefthand side with respect to t, then we get $Df_{H_t(p)}(V_{H_t(p)}) - \partial/\partial x^1 = 0$. For a similar reason, $fI_t(p) - (0, t)$ is constant equal to f(p). So if $p \in M$, and $r(p) := H_{-f_1(p)}I_{-f_2(p)}p$ then $fr(p) = f(p) - (f_1(p), 0) - (0, f_2(p)) = (0, 0)$. In other words, $r(p) \in N$. This defines a differentiable map $r : M \to N$. Then $(f_1, f_2, r) : M \to \mathbb{R}^2 \times N)$ is the inverse of the map $\mathbb{R}^2 \times N \to M$, $(a, b, p) \mapsto I_b H_a(p)$ and so the latter is a diffeomorphism.

(3c) Prove that if V and W generate flows on M, then the inclusion $i : N \subset M$ induces an isomorphism on De Rham cohomology: $H^k(i) : H^k_{DR}(M) \to H^k_{DR}(N)$ is an isomorphism for all k.

Under the above diffeomorphism, the inclusion *i* simply becomes the inclusion of N in $\mathbb{R}^2 \times N$ (as $\{(0,0\} \times N)$). We know that for any manifold N, the inclusion of N in $\mathbb{R} \times N$ (as $\{(0\} \times N)$) induces an isomorphism on De Rham cohomology. Applying this twice (first to N, then to $\{(0\} \times N)$ yields the result.

(4) Let M be a compact manifold and denote by $\pi : S^1 \times M \to M$ the projection. A k-form α on $S^1 \times M$ can always be written

$$\alpha(\theta, p) = \alpha'(\theta, p) + d\theta \wedge \alpha''(\theta, p),$$

where α' and α'' are forms (of degree k resp. k-1) on M that depend on $\theta \in S^1$ and θ is the angular coordinate on S^1 . Let $I(\alpha)$ be the (k-1)-form on M defined by $I(\alpha)(p) := \int_0^{2\pi} \alpha''(\theta, p) d\theta$.

(4a) Prove that I commutes with the exterior derivative: $dI = -Id^1$.

We regard α' as a family of k-forms on M depending on the angular parameter θ . If $d_M \alpha'$ denotes the corresponding exterior derivative, then it is clear that

$$d\alpha' = d_M \alpha' + d\theta \wedge \frac{\partial \alpha'}{\partial \theta}$$
 and $d(d\theta \wedge \alpha'') = -d\theta \wedge d_M \alpha''$.

¹The formula to prove was erroneously stated as: dI = Id

It follows that $(d\alpha)'' = \partial \alpha' / \partial \theta - d_M \alpha''$. If we then integrate over θ we find that

$$(Id\alpha)(p) = \int_0^{2\pi} \frac{\partial \alpha'}{\partial \theta}(\theta, p) d\theta - \int_0^{2\pi} (d_M \alpha'')(\theta, p) d\theta =$$

= $\alpha'(p, 2\pi) - \alpha'(p, 0) - \int_0^{2\pi} (d_M \alpha'')(\theta, p) d\theta =$
= $-d\left(\int_0^{2\pi} \alpha''(\theta, p) d\theta\right) = -dI(\alpha).$

(4b) Prove that I induces a linear map

$$I: H^k_{DR}(S^1 \times M) \to H^{k-1}_{DR}(M)$$

and show that this map is surjective.

It is clear that I is \mathbb{R} -linear. If α is closed, then so is $I(\alpha)$, for $dI(\alpha) =$ $-Id(\alpha) = 0$. If α is exact, say $\alpha = d\tilde{\alpha}$, then $I(\alpha) = Id(\tilde{\alpha}) = -dI(\tilde{\alpha})$ and hence $I(\alpha)$ is exact. So I induces a linear map as asserted. If β is a closed (k-1)-form on M, then $d\theta \wedge \beta$ is a closed k-form on $S^1 \times M$ (for $d(d\theta \wedge \beta) = -d\theta \wedge d\beta = 0$ and we have $I(\beta) = 2\pi\beta$. So I maps (the class of) $(2\pi)^{-1}d\theta \wedge \beta$ to (the class of) β . (4c) Prove that $H^k(\pi) : H^k_{DR}(M) \to H^k_{DR}(S^1 \times M)$ is injective and that its

composition with I is zero.

Let $i: M \to S^1 \times M$ be the inclusion given by $p \mapsto (0, p)$. Then $\pi i: M \to M$ is the identity map and hence so is $H_{DR}^k(\pi i) = H_{DR}^k(i)H_{DR}^k(\pi)$. This implies that $H_{DR}^k(\pi)$ is injective. If β is a k-form on M, then $\pi_M^*\beta$ is the same k-form, but now thought of as a form on $S^1 \times M$. In particular, $(\pi_M^* \beta)'' = 0$ and so $I\pi^*_M\beta = 0.$ It follows that π^*_M maps to the kernel of $I: H^k_{DR}(S^1 \times M) \to I$ $H^{k-1}_{DR}(M).$

(4d) Prove that the image of $H^k(\pi)$ is the kernel of *I*. Conclude that $H^k_{DR}(S^1 \times M) \cong H^k_{DR}(M) \oplus H^{k-1}_{DR}(M)$.

An element a of the kernel of $I: H^k_{DR}(S^1 \times M) \to H^{k-1}_{DR}(M)$ is by definition represented by a closed k-form α on $S^1 \times M$ with the property that $I(\alpha)$ is exact: $I(\alpha) = d\beta$ for some (k-2)-form β on M. We must show that it can be represented by the image of a closed k-form on M under π_M^* .

Consider the (k-1)-form $d\theta \wedge \beta$ on $S^1 \times M$. Then $d(d\theta \wedge \beta) = -d\theta \wedge d\beta =$ $-d\theta \wedge I(\alpha)$. So upon replacing α by $\alpha + d(d\theta \wedge \beta)$, we can always represent a by an α with $I(\alpha) = 0$, that is, with $\int_0^{2\pi} \alpha''(t, p) dt = 0$ for all p. Then

$$\gamma(p,\theta) := \int_0^\theta \alpha''(t,p) dt.$$

is periodic in θ with period 2π and hence defines a (k-1) form on $S^1 \times M$. We have $(d\gamma)'' = -d\theta \wedge \alpha''$ and so if we replace α by $\alpha + d\gamma$, we can even arrange that $\alpha'' = 0$. We then have $\alpha = \alpha'$ and $0 = (d\alpha)'' = \frac{\partial \alpha'}{\partial \theta}$. This implies that α' is constant in θ and hence defines a k-form on M (that we still denote α'). Then *a* is represented by $\pi^*_M(\alpha')$ and hence is in the image of $H^k_{DR}(\pi_M)$. It follows from the preceding that

$$(H^k_{DR}(i), I): H^k_{DR}(S^1 \times M) \to H^k_{DR}(M) \oplus H^{k-1}_{DR}(M)$$

is an isomorphism of vector spaces.