(1) Let $\lambda \in \mathbb{C}$ have positive real part. Prove that the map $f: \mathbb{R} \rightarrow \mathbb{C}$ defined by $f(t)=e^{\lambda t}$ is an injective immersion whose image is not closed in \mathbb{C}. Is f an embedding?
We have $\mid f\left(t \mid=e^{\operatorname{Re}(\lambda) t}\right.$. So $|f|$ defines a diffeomorphism of \mathbb{R} onto $(0, \infty)$ with inverse $\operatorname{Re}(\lambda) \log (t)$. This implies that f and its derivative are injective: f is an injective immersion. It is also a homeomorphism onto its image, for its inverse is the restriction of $z \in \mathbb{C}-\{0\} \mapsto \operatorname{Re}(\lambda) \log |z|$ to $f(\mathbb{R})$. This implies that f is an embedding.
(2) Show that real projective n-space P^{n} is orientable for n odd. Explain why P^{n} cannot be oriented when n is even.
We orient S^{n} as boundary of the unit ball: if we identify $T_{p} S^{n}$ with the orthogonal complement of p in \mathbb{R}^{n+1}, then we stipulate that a basis v_{1}, \ldots, v_{n} of the latter is oriented if and only if the basis $\left(p, v_{1}, \ldots, v_{n}\right)$ of \mathbb{R}^{n+1} has positive determinant. The antipodal map, $\iota: S^{n} \rightarrow S^{n}$, is the restriction of $-1_{n+1}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ and the latter has determinant $(-1)^{n+1}$. So the derivative of ι at p sends $\left(p, v_{1}, \ldots, v_{n}\right)$ to $\left(-p,-v_{1}, \ldots,-v_{n}\right)$. Hence $D_{p} \iota$ is orientation preserving if and only if n is odd.

We now think of P^{n} as obtained from the unit sphere $S^{n} \subset \mathbb{R}^{n+1}$ by identifying antipodal pairs. The corresponding map $f: S^{n} \rightarrow P^{n}$ is a local diffeomorphism, in particular the derivative of f at any $p \in S^{n}$ is an isomorphism and we have $D_{p} f=D_{p}(f \iota)=D_{-p} f D_{p} \iota: T_{p} S^{n} \rightarrow T_{f(p)} P^{n}$. We saw that for odd $n, D_{p} \iota$ is orientation preserving and so we may fix an orientation of $T_{f(p)} P^{n}$ by requiring that D_{f} (or $D_{-p} f$-this does not matter) is orientation preserving. This defines an orientation on P^{n}.

Let now n be even and positive. Suppose we have succeeded in orienting P^{n}. Since $D_{p} \iota$ is orientation reversing only one of $D_{p} f$ and $D_{-p} f$ is orientation preserving. This singles out an element of the antipodal pair $\{p,-p\}$. We thus obtain a continuous section $g: P^{n} \rightarrow S^{n}$ of f. Since P^{n} is compact, so is its image $g\left(P^{n}\right)$. In particular, $g\left(P^{n}\right)$ is closed. Its complement is $-g\left(P^{n}\right)$ and hence also closed. So $\left\{g\left(P^{n}\right),-g\left(P^{n}\right)\right\}$ is a nontrivial splitting of S^{n}. This contradicts the fact that S^{n} is connected.
(3) Let M be a manifold, $f: M \rightarrow \mathbb{R}^{2}$ a C^{∞}-map and put $N:=f^{-1}(0,0)$. Let V and W be vector fields on M that lift ∂ / ∂_{x} resp. ∂ / ∂_{y} (so $D_{p} f\left(V_{p}\right)=$ ∂ / ∂_{x} and $D_{p} f\left(W_{p}\right)=\partial / \partial_{y}$ for every $\left.p \in M\right)$.
(3a) Prove that N is a submanifold of M and that $[V, W]$ is tangent to it (i.e., restricts to a vector field on N).
The assumption implies that for every $p \in M, D_{p} f$ is a surjection. So f is a submersion and by our form of the implicit function theorem it then follows that $N=f^{-1}(0,0)$ is a submanifold.

We give two proofs for the second part.
First proof: Choose at a point of N a coordinate chart $\kappa: U \rightarrow \mathbb{R}^{m}$ such that
that $\kappa_{1}=f_{1}$ and $\kappa_{2}=f_{2}$. So N is then given by $\kappa_{1}=\kappa_{2}=0$. In terms of this chart V resp. W looks like

$$
\partial / \partial x^{1}+\sum_{i \geq 3} V^{i}(x) \partial / \partial x^{i} \quad \text { resp. } \quad \partial / \partial x^{2}+\sum_{i \geq 3} W^{i}(x) \partial / \partial x^{i}
$$

An easy check shows that the Lie bracket of these two vector fields involves only terms of the form $\partial / \partial x^{3}, \ldots, \partial / \partial x^{m}$ and so $[V, W]$ is tangent to N.
Second proof: Since V is a lift of $\partial / \partial x^{1}$ we have $V\left(f_{1}\right)=1$ and $V\left(f_{2}\right)=0$. Likewise $W\left(f_{1}\right)=0, W\left(f_{2}\right)=1$. So $[V, W]\left(f_{1}\right)=V W\left(f_{1}\right)-W V\left(f_{1}\right)=$ $-W(1)=0$ and similarly $[V, W]\left(f_{2}\right)=0$. This means that $[V, W]$ is tangent to the fibers of f.
(3b) Suppose that V and W generate flows on M (that we shall denote by H resp. I). Prove that the map $\mathbb{R}^{2} \times N \rightarrow M,(a, b, p) \mapsto I_{b} H_{a}(p)$ is a diffeomorphism. (Hint: find a formula for its inverse.)
We claim that $f H_{t}(p)-(t, 0)$ is constant equal to $f(p)$. For if we differentiate the lefthand side with respect to t, then we get $D f_{H_{t}(p)}\left(V_{H_{t}(p)}\right)-\partial / \partial x^{1}=0$. For a similar reason, $f I_{t}(p)-(0, t)$ is constant equal to $f(p)$. So if $p \in M$, and $r(p):=H_{-f_{1}(p)} I_{-f_{2}(p)} p$ then $f r(p)=f(p)-\left(f_{1}(p), 0\right)-\left(0, f_{2}(p)\right)=(0,0)$. In other words, $r(p) \in N$. This defines a differentiable map $r: M \rightarrow N$. Then $\left.\left(f_{1}, f_{2}, r\right): M \rightarrow \mathbb{R}^{2} \times N\right)$ is the inverse of the map $\mathbb{R}^{2} \times N \rightarrow M$, $(a, b, p) \mapsto I_{b} H_{a}(p)$ and so the latter is a diffeomorphism.
(3c) Prove that if V and W generate flows on M, then the inclusion $i: N \subset M$ induces an isomorphism on De Rham cohomology: $H^{k}(i): H_{D R}^{k}(M) \rightarrow H_{D R}^{k}(N)$ is an isomorphism for all k.
Under the above diffeomorphism, the inclusion i simply becomes the inclusion of N in $\mathbb{R}^{2} \times N$ (as $\{(0,0\} \times N)$. We know that for any manifold N, the inclusion of N in $\mathbb{R} \times N$ (as $\{(0\} \times N)$ induces an isomorphism on De Rham cohomology. Applying this twice (first to N, then to $\{(0\} \times N)$ yields the result.
(4) Let M be a compact manifold and denote by $\pi: S^{1} \times M \rightarrow M$ the projection. A k-form α on $S^{1} \times M$ can always be written

$$
\alpha(\theta, p)=\alpha^{\prime}(\theta, p)+d \theta \wedge \alpha^{\prime \prime}(\theta, p)
$$

where α^{\prime} and $\alpha^{\prime \prime}$ are forms (of degree k resp. $k-1$) on M that depend on $\theta \in S^{1}$ and θ is the angular coordinate on S^{1}. Let $I(\alpha)$ be the $(k-1)$-form on M defined by $I(\alpha)(p):=\int_{0}^{2 \pi} \alpha^{\prime \prime}(\theta, p) d \theta$.
(4a) Prove that I commutes with the exterior derivative: $d I=-I d^{1}$.
We regard α^{\prime} as a family of k-forms on M depending on the angular parameter θ. If $d_{M} \alpha^{\prime}$ denotes the corresponding exterior derivative, then it is clear that

$$
d \alpha^{\prime}=d_{M} \alpha^{\prime}+d \theta \wedge \frac{\partial \alpha^{\prime}}{\partial \theta} \text { and } d\left(d \theta \wedge \alpha^{\prime \prime}\right)=-d \theta \wedge d_{M} \alpha^{\prime \prime}
$$

[^0]It follows that $(d \alpha)^{\prime \prime}=\partial \alpha^{\prime} / \partial \theta-d_{M} \alpha^{\prime \prime}$. If we then integrate over θ we find that

$$
\begin{aligned}
& (I d \alpha)(p)=\int_{0}^{2 \pi} \frac{\partial \alpha^{\prime}}{\partial \theta}(\theta, p) d \theta-\int_{0}^{2 \pi}\left(d_{M} \alpha^{\prime \prime}\right)(\theta, p) d \theta= \\
& =\alpha^{\prime}(p, 2 \pi)-\alpha^{\prime}(p, 0)-\int_{0}^{2 \pi}\left(d_{M} \alpha^{\prime \prime}\right)(\theta, p) d \theta= \\
& \quad=-d\left(\int_{0}^{2 \pi} \alpha^{\prime \prime}(\theta, p) d \theta\right)=-d I(\alpha)
\end{aligned}
$$

(4b) Prove that I induces a linear map

$$
I: H_{D R}^{k}\left(S^{1} \times M\right) \rightarrow H_{D R}^{k-1}(M)
$$

and show that this map is surjective.
It is clear that I is \mathbb{R}-linear. If α is closed, then so is $I(\alpha)$, for $d I(\alpha)=$ $-I d(\alpha)=0$. If α is exact, say $\alpha=d \tilde{\alpha}$, then $I(\alpha)=I d(\tilde{\alpha})=-d I(\tilde{\alpha})$ and hence $I(\alpha)$ is exact. So I induces a linear map as asserted. If β is a closed ($k-1$)-form on M, then $d \theta \wedge \beta$ is a closed k-form on $S^{1} \times M$ (for $d(d \theta \wedge \beta)=-d \theta \wedge d \beta=0$) and we have $I(\beta)=2 \pi \beta$. So I maps (the class of) $(2 \pi)^{-1} d \theta \wedge \beta$ to (the class of) β.
(4c) Prove that $H^{k}(\pi): H_{D R}^{k}(M) \rightarrow H_{D R}^{k}\left(S^{1} \times M\right)$ is injective and that its composition with I is zero.
Let $i: M \rightarrow S^{1} \times M$ be the inclusion given by $p \mapsto(0, p)$. Then $\pi i: M \rightarrow M$ is the identity map and hence so is $H_{D R}^{k}(\pi i)=H_{D R}^{k}(i) H_{D R}^{k}(\pi)$. This implies that $H_{D R}^{k}(\pi)$ is injective. If β is a k-form on M, then $\pi_{M}^{*} \beta$ is the same k-form, but now thought of as a form on $S^{1} \times M$. In particular, $\left(\pi_{M}^{*} \beta\right)^{\prime \prime}=0$ and so $I \pi_{M}^{*} \beta=0$. It follows that π_{M}^{*} maps to the kernel of $I: H_{D R}^{k}\left(S^{1} \times M\right) \rightarrow$ $H_{D R}^{k-1}(M)$.
(4d) Prove that the image of $H^{k}(\pi)$ is the kernel of I. Conclude that $H_{D R}^{k}\left(S^{1} \times\right.$ $M) \cong H_{D R}^{k}(M) \oplus H_{D R}^{k-1}(M)$.
An element a of the kernel of $I: H_{D R}^{k}\left(S^{1} \times M\right) \rightarrow H_{D R}^{k-1}(M)$ is by definition represented by a closed k-form α on $S^{1} \times M$ with the property that $I(\alpha)$ is exact: $I(\alpha)=d \beta$ for some $(k-2)$-form β on M. We must show that it can be represented by the image of a closed k-form on M under π_{M}^{*}.

Consider the $(k-1)$-form $d \theta \wedge \beta$ on $S^{1} \times M$. Then $d(d \theta \wedge \beta)=-d \theta \wedge d \beta=$ $-d \theta \wedge I(\alpha)$. So upon replacing α by $\alpha+d(d \theta \wedge \beta)$, we can always represent a by an α with $I(\alpha)=0$, that is, with $\int_{0}^{2 \pi} \alpha^{\prime \prime}(t, p) d t=0$ for all p. Then

$$
\gamma(p, \theta):=\int_{0}^{\theta} \alpha^{\prime \prime}(t, p) d t
$$

is periodic in θ with period 2π and hence defines a $(k-1)$ form on $S^{1} \times M$. We have $(d \gamma)^{\prime \prime}=-d \theta \wedge \alpha^{\prime \prime}$ and so if we replace α by $\alpha+d \gamma$, we can even arrange that $\alpha^{\prime \prime}=0$. We then have $\alpha=\alpha^{\prime}$ and $0=(d \alpha)^{\prime \prime}=\frac{\partial \alpha^{\prime}}{\partial \theta}$. This implies that α^{\prime} is constant in θ and hence defines a k-form on M (that we
still denote α^{\prime}). Then a is represented by $\pi_{M}^{*}\left(\alpha^{\prime}\right)$ and hence is in the image of $H_{D R}^{k}\left(\pi_{M}\right)$.
It follows from the preceding that

$$
\left(H_{D R}^{k}(i), I\right): H_{D R}^{k}\left(S^{1} \times M\right) \rightarrow H_{D R}^{k}(M) \oplus H_{D R}^{k-1}(M)
$$

is an isomorphism of vector spaces.

[^0]: ${ }^{1}$ The formula to prove was erroneously stated as: $d I=I d$

