Differentiable Manifolds (WISB342) November 8th 2004

Excercise 1

Consider the 2-dimensional real projective plane $\mathcal{P}^{2}(\mathbb{R})$. Points can be described by ratio's $[x: y$: $z]$. One can take 3 coordinate patches $\bigcup_{x}=\{[x: y: z] \mid x \neq 0\} ; \bigcup_{y}$ and \bigcup_{z} similar.
a. Describe charts $\bigcup_{x} \rightarrow \mathbb{R}$ and $\bigcup_{y} \rightarrow \mathbb{R}^{2}$ and compute the transition function.
b. Let S^{2} be the 2 -sphere in \mathbb{R}^{3} given by $x^{2}+y^{2}+z^{2}=1$ and $f: S^{2} \rightarrow \mathcal{P}^{2}(\mathbb{R})$ be griven by $(x, y, z) \rightarrow[x: y: z]$. Choose a coordinate patch for S^{2} and one for \mathcal{P}^{2} and describe f on the choosen charts.

Excercise 2

Let be given the smooth* manifolds M, N and P and the smooth maps $f: M \rightarrow N$ and $G: N \rightarrow P$
a. Show that $g \circ f: M \rightarrow P$ is a smooth map (starting from the definition on charts).
b. Give the definition of tangent vector $X \in T_{p} M$ (in terms of the equivalence classes of curves) and show that $D_{p}(g \circ f): T_{p} M \rightarrow T_{g f p} P$ is equal to the composition $D_{f p}(g) \circ D_{p}(f)$

Excercise 3

Let V and W be vectorfields on a manifold M and let f, f_{1}, f_{2}, g be functions on M. Show:
a. $\left[f_{1} V, f_{2} W\right](g)=f_{1} f_{2}[V, W](g)+f_{1} V\left(f_{2}\right) W(g)-f_{2} W\left(f_{1}\right) V(g)$
b. $[V, W](f \cdot g)=g \cdot[V, W](g)+f \cdot[V, W](g)$

Excercise 4

Let $M=\mathbb{R}^{2}$. We consider for $t \in \mathbb{R}$ and $s \in \mathbb{R}$ the following 1-parameter families of maps:

$$
\left\{\begin{array}{l}
H_{t}(x, y)=(x+t, y) \\
K_{s}(x, y)=(x, y+s x)
\end{array}\right.
$$

a. Show that $\left\{H_{t}\right\}$ and $\left\{K_{s}\right\}$ satisfy the definition of flow.
b. Compute the infinitesimal generators V of $\left\{H_{t}\right\}$, resp. W of $\left\{K_{s}\right\}$
c. Compute $K_{-s} H_{-t} K_{s} H_{t}(x, y)$
d. Let f be any function on \mathbb{R}^{2}. Compute $[V, W](f)$ and give an expression for $[V, W]$ in terms of $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$
$\left\ulcorner\right.$ N.B. If you are not sure about your answers in b) then you may use $V=2 \frac{\partial}{\partial x}$ and $\left.W=3 \frac{\partial}{\partial x}\right\lrcorner$
e. Compute the infinitesimal generator of $K_{-t} H_{-t} K_{t} H_{t}$

Excercise 5

Let $s: V \rightarrow V$ be a linear map between 3-dimensional vectorspaces, given by:

$$
\left\{\begin{array}{llc}
s\left(e_{1}\right) & = & e_{1} \\
s\left(e_{2}\right) & = & 2 e_{1}+4 e_{2} \\
s\left(e_{3}\right) & = & 3 e_{1}+5 e_{2}+6 e_{3}
\end{array}\right.
$$

a. Compute the matrix of $\bigwedge_{s}^{2}: \bigwedge^{2} V \rightarrow \bigwedge^{2} V\left(\right.$ wrt $\left.e_{i} \wedge e_{j} \mid i<j\right)$
b. Compute a matrix of $\bigwedge_{s}^{3}: \bigwedge^{2} V \rightarrow \bigwedge^{3} V$
c. Identify $\bigwedge_{s}^{4}: \bigwedge^{4} V \rightarrow \bigwedge^{4} V$

