INSTITUTE OF MATHEMATICS, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UU. MADE AVAILABLE IN ELECTRONIC FORM BY THE \mathcal{BC} OF A-Eskwadraat IN 2004/2005, THE COURSE WISB342 WAS GIVEN BY PROF. DR. D. SIERSMA.

Differentiable Manifolds (WISB342) November 8th 2004

Excercise 1

Consider the 2-dimensional real projective plane $\mathcal{P}^2(\mathbb{R})$. Points can be described by ratio's [x : y : z]. One can take 3 coordinate patches $\bigcup_x = \{[x : y : z] | x \neq 0\}; \bigcup_y \text{ and } \bigcup_z \text{ similar.}$

- a. Describe charts $\bigcup_x \to \mathbb{R}$ and $\bigcup_y \to \mathbb{R}^2$ and compute the transition function.
- b. Let S^2 be the 2-sphere in \mathbb{R}^3 given by $x^2 + y^2 + z^2 = 1$ and $f : S^2 \to \mathcal{P}^2(\mathbb{R})$ be griven by $(x, y, z) \to [x : y : z]$. Choose a coordinate patch for S^2 and one for \mathcal{P}^2 and describe f on the choosen charts.

Excercise 2

Let be given the smooth manifolds M, N and P and the smooth maps $f: M \to N$ and $G: N \to P$

- a. Show that $g \circ f : M \to P$ is a smooth map (starting from the definition on charts).
- b. Give the definition of tangent vector $X \in T_p M$ (in terms of the equivalence classes of curves) and show that $D_p(g \circ f) : T_p M \to T_{gfp} P$ is equal to the composition $D_{fp}(g) \circ D_p(f)$

Excercise 3

Let V and W be vectorfields on a manifold M and let f, f_1, f_2, g be functions on M. Show:

a.
$$[f_1V, f_2W](g) = f_1f_2[V, W](g) + f_1V(f_2)W(g) - f_2W(f_1)V(g)$$

b.
$$[V, W](f \cdot g) = g \cdot [V, W](g) + f \cdot [V, W](g)$$

Excercise 4

Let $M = \mathbb{R}^2$. We consider for $t \in \mathbb{R}$ and $s \in \mathbb{R}$ the following 1-parameter families of maps:

$$\begin{cases} H_t(x,y) &= (x+t,y) \\ K_s(x,y) &= (x,y+sx) \end{cases}$$

- a. Show that $\{H_t\}$ and $\{K_s\}$ satisfy the definition of flow.
- b. Compute the infinitesimal generators V of $\{H_t\}$, resp. W of $\{K_s\}$
- c. Compute $K_{-s}H_{-t}K_sH_t(x,y)$
- d. Let f be any function on \mathbb{R}^2 . Compute [V, W](f) and give an expression for [V, W] in terms of $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial u}$

 \neg N.B. If you are not sure about your answers in b) then you may use $V = 2\frac{\partial}{\partial x}$ and $W = 3\frac{\partial}{\partial x}$

e. Compute the infinitesimal generator of $K_{-t}H_{-t}K_tH_t$

Excercise 5

Let $s:V \to V$ be a linear map between 3-dimensional vector spaces, given by:

$$\begin{cases} s(e_1) &= e_1 \\ s(e_2) &= 2e_1 + 4e_2 \\ s(e_3) &= 3e_1 + 5e_2 + 6e_3 \end{cases}$$

- a. Compute the matrix of $\bigwedge_s^2 : \bigwedge^2 V \to \bigwedge^2 V$ (wrt $e_i \land e_j | i < j$)
- b. Compute a matrix of $\bigwedge_s^3:\bigwedge^2 V\to \bigwedge^3 V$
- c. Identify $\bigwedge_s^4:\bigwedge^4 V\to \bigwedge^4 V$