
EXAM DIFFERENTIAL MANIFOLDS JAN 2007: SOLUTIONS

1. Let f : M → N be a C∞-map between manifolds. Prove that
F : M → M ×N , F (p) = (p, f(p)) is an embedding.
According to a theorem it suffices to show that F is an injective immersion
which maps M homeomorphically onto the subspace F (M) of N . To this
end we consider the projection π : M × N → M . Then πF is the identity.
So F is injective and an immersion (for DF (p)DπF (p) : TpM → TpM is the
identity map). The maps π and F are continuous and hence so are their
restrictions M → F (M) and F (M) → M . So F maps M homeomorphically
onto F (M).

2. Let U ⊂ Rm be open and let f : U → Rm be a C∞-function with the
property that df(p) 6= 0 for every p ∈ U with f(p) = 0, so that (by the implicit
function theorem) f−1(0) is a submanifold.
2a. Prove that this submanifold is orientable.
Let p ∈ f−1(0). Then the tangent space of f−1(0) at p is the hyperplane in
TpRm that is the kernel of the linear form dfp : TpRm → R. The orientation
of Rm and the observation that this hyperplane is the boundary of the
halfspace defined by dfp ≤ 0 give an orientation of the kernel of dfp. We
thus obtain in a canonical fashion an orientation of the tangent bundle of
f−1(0).
2b. Give an example of a surface in R3 that is not orientable (and conclude
that it cannot arise in the above manner).
The Möbius band is not orientable, but can be embedded in R3.

3. Let f : N → M be a C∞-map between manifolds with N oriented
compact and of dimension n and let α be an n-form on M . Prove that if
H : R × M → M is a flow, then

∫
N f∗H∗

t α is constant in t. (Hint: consider
the pull-back of α under the map F : R×N → M , (t, p) 7→ Htf(p).)
Here are two proofs, the first one uses the hint. In that case, consider the
m-form F ∗α. Since α is closed, so is F ∗α. We know that then exists an
n-form β on N such that F ∗α − π∗Nβ is exact, i.e., of the form dγ, where
πN : R×N → N is the projection. Now is∫

N
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t α =
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π∗Nβ +
∫
{t}×N

dγ =
∫

N
β

(for
∫
{t}×N dγ = 0 by Stokes) and hence constant. Another proof uses the

Lie derivative: if V is the infinitesimal generator of the flow, then
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again by Stokes’ theorem, and so
∫
N f∗H∗

t α is constant in t.

4. Let f : M → N be a C∞-map between manifolds and let V be a vector
field on N . A lift of V over f is a vector field Ṽ on M with the property that
Dpf(Ṽp) = Vf(p) for all p ∈ M .
4a. Prove that f is a submersion at p, then there is an open neighborhood
U 3 p in M such that V has a lift over f |U : U → N .
If f is a submersion at p, then we can find charts κ at p and λ at f(p) so
that λfκ−1 is the restriction of the projection (x1, . . . , xm) 7→ (x1, . . . , xn).
If V is at f(p) given by

∑n
i=1 V i∂/∂λi, then a lift Ṽ of V at p is given by∑n

i=1(V
if)∂/∂κi.

4b. Prove that if U ⊂ M is open and Ṽ0, . . . , Ṽk are lifts of V over f |U , then any
convex linear combination of these is also one, that is, if φ0, . . . , φk : U → R
are C∞-functions with

∑
i φi constant 1, then

∑
i φiṼi is also a lift of V .

We have Dpf(Ṽi,p) = Vi,f(p), i = 0, . . . , k, and so

Dpf(
k∑

i=0

φ(p)Ṽi,p) =
k∑

i=0

φ(p)Dpf(Ṽi,p) =
k∑

i=0

φ(p)Vi,f(p) = Vi,f(p).

In the remaining parts of this problem we assume that M and N are compact
and that f is a submersion. Since N is compact, V generates a flow H :
R×N → N .
4c. Prove that there exists a lift Ṽ of V over f .
According to 4a) we can cover M by open subsets Uα such that V has a
lift Ṽα over f |Uα . Since M is compact, M is covered by finitely many such
open subsets Uα0 , . . . , Uαk

. If {φi}k
i=0 is a partition of 1 subordinate to this

covering, then 4b) implies that Ṽ :=
∑k

i=1 φiṼαi is a lift of V over f .
4d. Let H̃ : R × M → M be the flow generated by this lift Ṽ . Prove that
fH̃t = Htf .
Fix p ∈ M . If γ̃p(t) := H̃t(p), then we have

(fγ̃)̇p(t) = Df( ˙̃γp(t)) = Df(Ṽγ̃p(t)) = Vfγ̃p(t)

and so fγ̃p is the integral curve γp of V through f(p). In other words,
fH̃t(p) = Htf(p). Since this is true for every p ∈ M , it follows that
fH̃t = Htf .

5. Let M be a m-manifold and µ a nowhere zero m-form on M . Prove that
M has an atlas such that every chart (U, κ) in that atlas has the property that
µ|U = κ∗(dx1 ∧ · · · ∧ dxm). Prove that any coordinate change of this atlas (a
diffeomorphism from an open subset of Rm to another) has Jacobian a matrix
of determinant constant 1.
If κ is any chart of M at p, then κ∗µ takes the form φ(x)dx1∧· · · dxmfor some
nowhere zero fuction φ on the range of κ. If x̃1 is a fuction (on an open
subset of Pm such that ∂x̃1

∂x̃1
= φ, then µ is at p equal to dx̃1 ∧ dx2 ∧ · · · ∧ dxm.



The Jacobian matrix of the map (x1, . . . , xm) 7→ (x̃1, x2, . . . , xm) is ∂x̃1
∂x̃1

= φ

and hence nonzero. So by the inverse function therorem, (x̃1, x2, . . . , xm) is
also a chart of M at p.
Prove that any coordinate change of this atlas (a diffeomorphism from an open
subset of Rm to another) has Jacobian a matrix of determinant constant 1.
Any coordinate change is a diffeomorphism h from an open subset U ⊂ Rm

onto another open subset U ′ ⊂ Rm that has the property that h∗dx1 ∧ · · · ∧
dxm = dx1 ∧ · · · ∧ dxm. This means that the Jacobian matrix of h has
determinant 1.


