EXAM DIFFERENTIAL MANIFOLDS JAN 2007: SOLUTIONS

1. Let $f : M \to N$ be a C^{∞} -map between manifolds. Prove that $F: M \to M \times N$, F(p) = (p, f(p)) is an embedding.

According to a theorem it suffices to show that F is an injective immersion which maps M homeomorphically onto the subspace F(M) of N. To this end we consider the projection $\pi : M \times N \to M$. Then πF is the identity. So F is injective and an immersion (for $D_{F(p)}D\pi_{F(p)} : T_pM \to T_pM$ is the identity map). The maps π and F are continuous and hence so are their restrictions $M \to F(M)$ and $F(M) \to M$. So F maps M homeomorphically onto F(M).

2. Let $U \subset \mathbb{R}^m$ be open and let $f : U \to \mathbb{R}^m$ be a C^{∞} -function with the property that $df(p) \neq 0$ for every $p \in U$ with f(p) = 0, so that (by the implicit function theorem) $f^{-1}(0)$ is a submanifold.

2a. Prove that this submanifold is orientable.

Let $p \in f^{-1}(0)$. Then the tangent space of $f^{-1}(0)$ at p is the hyperplane in $T_p \mathbb{R}^m$ that is the kernel of the linear form $df_p : T_p \mathbb{R}^m \to \mathbb{R}$. The orientation of \mathbb{R}^m and the observation that this hyperplane is the boundary of the halfspace defined by $df_p \leq 0$ give an orientation of the kernel of df_p . We thus obtain in a canonical fashion an orientation of the tangent bundle of $f^{-1}(0)$.

2b. Give an example of a surface in \mathbb{R}^3 that is not orientable (and conclude that it cannot arise in the above manner).

The Möbius band is not orientable, but can be embedded in \mathbb{R}^3 .

3. Let $f : N \to M$ be a C^{∞} -map between manifolds with N oriented compact and of dimension n and let α be an n-form on M. Prove that if $H : \mathbb{R} \times M \to M$ is a flow, then $\int_N f^* H_t^* \alpha$ is constant in t. (Hint: consider the pull-back of α under the map $F : \mathbb{R} \times N \to M$, $(t, p) \mapsto H_t f(p)$.)

Here are two proofs, the first one uses the hint. In that case, consider the *m*-form $F^*\alpha$. Since α is closed, so is $F^*\alpha$. We know that then exists an *n*-form β on *N* such that $F^*\alpha - \pi_N^*\beta$ is exact, i.e., of the form $d\gamma$, where $\pi_N : \mathbb{R} \times N \to N$ is the projection. Now is

$$\int_{N} f^* H_t^* \alpha = \int_{\{t\} \times N} F^* \alpha = \int_{\{t\} \times N} \pi_N^* \beta + \int_{\{t\} \times N} d\gamma = \int_{N} \beta$$

(for $\int_{\{t\}\times N} d\gamma = 0$ by Stokes) and hence constant. Another proof uses the Lie derivative: if *V* is the infinitesimal generator of the flow, then

$$\frac{d}{dt} \int_N f^* H_t^* \alpha = \frac{d}{ds} \Big|_{s=0} \int_N f^* H_t^* H_s^* \alpha = \int_N f^* H_t^* \frac{d}{ds} \Big|_{s=0} H_s^* \alpha =$$
$$= \int_N f^* H_t^* \mathcal{L}_V \alpha = \int_N f^* H_t^* d\iota_V \alpha = \int_N d(f^* H_t^* \iota_V \alpha) = 0,$$

again by Stokes' theorem, and so $\int_N f^* H_t^* \alpha$ is constant in t.

4. Let $f: M \to N$ be a C^{∞} -map between manifolds and let V be a vector field on N. A lift of V over f is a vector field \tilde{V} on M with the property that $D_p f(\tilde{V}_p) = V_{f(p)}$ for all $p \in M$.

4a. Prove that f is a submersion at p, then there is an open neighborhood $U \ni p$ in M such that V has a lift over $f|_U : U \to N$.

If f is a submersion at p, then we can find charts κ at p and λ at f(p) so that $\lambda f \kappa^{-1}$ is the restriction of the projection $(x^1, \ldots, x^m) \mapsto (x^1, \ldots, x^n)$. If V is at f(p) given by $\sum_{i=1}^n V^i \partial / \partial \lambda^i$, then a lift \tilde{V} of V at p is given by $\sum_{i=1}^n (V^i f) \partial / \partial \kappa^i$.

4b. Prove that if $U \subset M$ is open and $\tilde{V}_0, \ldots, \tilde{V}_k$ are lifts of V over $f|_U$, then any convex linear combination of these is also one, that is, if $\phi_0, \ldots, \phi_k : U \to \mathbb{R}$ are C^{∞} -functions with $\sum_i \phi_i$ constant 1, then $\sum_i \phi_i \tilde{V}_i$ is also a lift of V. We have $D_p f(\tilde{V}_{i,p}) = V_{i,f(p)}, i = 0, \ldots, k$, and so

$$D_p f(\sum_{i=0}^k \phi(p)\tilde{V}_{i,p}) = \sum_{i=0}^k \phi(p)D_p f(\tilde{V}_{i,p}) = \sum_{i=0}^k \phi(p)V_{i,f(p)} = V_{i,f(p)}.$$

In the remaining parts of this problem we assume that M and N are compact and that f is a submersion. Since N is compact, V generates a flow H : $\mathbb{R} \times N \to N$.

4c. Prove that there exists a lift \tilde{V} of V over f.

According to 4a) we can cover M by open subsets U_{α} such that V has a lift \tilde{V}_{α} over $f|_{U_{\alpha}}$. Since M is compact, M is covered by finitely many such open subsets $U_{\alpha_0}, \ldots, U_{\alpha_k}$. If $\{\phi_i\}_{i=0}^k$ is a partition of 1 subordinate to this covering, then 4b) implies that $\tilde{V} := \sum_{i=1}^k \phi_i \tilde{V}_{\alpha_i}$ is a lift of V over f.

4d. Let $\tilde{H} : \mathbb{R} \times M \to M$ be the flow generated by this lift \tilde{V} . Prove that $f\tilde{H}_t = H_t f$.

Fix $p \in M$. If $\tilde{\gamma}_p(t) := \tilde{H}_t(p)$, then we have

$$(f\tilde{\gamma})_{p}(t) = Df(\tilde{\gamma}_{p}(t)) = Df(V_{\tilde{\gamma}_{p}(t)}) = V_{f\tilde{\gamma}_{p}(t)}$$

and so $f\tilde{\gamma}_p$ is the integral curve γ_p of V through f(p). In other words, $f\tilde{H}_t(p) = H_t f(p)$. Since this is true for every $p \in M$, it follows that $f\tilde{H}_t = H_t f$.

5. Let M be a m-manifold and μ a nowhere zero m-form on M. Prove that M has an atlas such that every chart (U, κ) in that atlas has the property that $\mu|_U = \kappa^*(dx^1 \wedge \cdots \wedge dx^m)$. Prove that any coordinate change of this atlas (a diffeomorphism from an open subset of \mathbb{R}^m to another) has Jacobian a matrix of determinant constant 1.

If κ is any chart of M at p, then $\kappa_*\mu$ takes the form $\phi(x)dx^1\wedge\cdots dx^m$ for some nowhere zero fuction ϕ on the range of κ . If \tilde{x}_1 is a fuction (on an open subset of \mathbb{P}^m such that $\frac{\partial \tilde{x}_1}{\partial \tilde{x}_1} = \phi$, then μ is at p equal to $d\tilde{x}^1 \wedge dx^2 \wedge \cdots \wedge dx^m$. The Jacobian matrix of the map $(x^1, \ldots, x^m) \mapsto (\tilde{x}^1, x^2, \ldots, x^m)$ is $\frac{\partial \tilde{x}_1}{\partial \tilde{x}_1} = \phi$ and hence nonzero. So by the inverse function theorem, $(\tilde{x}^1, x^2, \ldots, x^m)$ is also a chart of M at p.

Prove that any coordinate change of this atlas (a diffeomorphism from an open subset of \mathbb{R}^m to another) has Jacobian a matrix of determinant constant 1. Any coordinate change is a diffeomorphism h from an open subset $U \subset \mathbb{R}^m$ onto another open subset $U' \subset \mathbb{R}^m$ that has the property that $h^*dx^1 \wedge \cdots \wedge dx^m = dx^1 \wedge \cdots \wedge dx^m$. This means that the Jacobian matrix of h has determinant 1.