Differentiable manifolds - Exam 1

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you hand in.
2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are allowed to consult text books and class notes.
5. You are not allowed to consult colleagues, calculators, computers etc.
6. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

Some definitions you should know, but may have forgotten

- The quaternions, \mathbb{H}, are isomorphic to \mathbb{R}^{4} as vector space and are endowed with a multiplication which makes $\mathbb{H} \backslash\{0\}$ into a group. This multiplication is \mathbb{R}-bilinear and is defined on a basis $\{1, i, j, k\}$ of \mathbb{H} by

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

- A Lie group is a differentiable manifold G endowed with the structure of a group and for which the maps

$$
\begin{array}{rl}
G \times G \longrightarrow G & (g, h) \mapsto g \cdot h \\
G \longrightarrow G & g \mapsto g^{-1}
\end{array}
$$

are smooth.

Questions

1) (1.5 pt) Let $E \xrightarrow{\pi} M$ be a vector bundle over a manifold M and let $s: M \longrightarrow E$ be a section. Show that s is an embedding of M on E.
2) Let M be the subset of \mathbb{R}^{3} defined by the equation

$$
M=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+3 x_{1} x_{2} x_{3}=1\right\}
$$

a) (1 pt) Show that M is an embedded submanifold of \mathbb{R}^{3};
b) (1.5 pt) Define $\pi: M \longrightarrow \mathbb{R} ; \pi\left(x_{1}, x_{2}, x_{3}\right)=x_{1}$. Find the critical points and critical values of π.
3) (2 pt) Let $\varphi: M \longrightarrow N$ be an embedding such that $\varphi(M)$ is a closed subset of N. Let $X \in \Gamma(T M)$ be a vector field. Show that there is a vector field $Y \in \Gamma(T N)$ such that $\varphi_{*}\left(\left.X\right|_{p}\right)=\left.Y\right|_{\varphi(p)}$.
4) Let \mathbb{H} be the space of quaternions.
a) (1 pt) Show that $\mathbb{H} \backslash\{0\}$ is a Lie group if endowed with quaternionic multiplication as group operation.
b) (1 pt) Show that the 3 -dimensional sphere $S^{3} \subset \mathbb{H} \backslash\{0\}$ is also a Lie group with quaternionic multiplication as group operation.
5) (2 pt) Let $\mathfrak{U}=\left\{U_{\alpha}: \alpha \in A\right\}$ be a cover of a manifold M for which each open set $U_{\alpha_{0} \cdots \alpha_{n}}$ is either empty or homeomorphic to a disc. Show that $\breve{H}^{k}\left(M ; \mathbb{Z}_{2} ; \mathfrak{U}\right) \cong \breve{H}^{k}\left(M ; \mathbb{C}^{\infty}\left(M ; \mathbb{R}^{*}\right) ; \mathfrak{U}\right)$ for all $k \in \mathbb{Z}$.

Hint: A possible approach using the sequence

$$
\mathbb{Z}_{2} \triangleleft C^{\infty}\left(U ; \mathbb{R}^{*}\right) \longrightarrow C^{\infty}(U ; \mathbb{R})
$$

a) Consider $\mathbb{Z}_{2} \subset \mathbb{R}^{*}$ as the set $\{1,-1\}$. The inclusion $\iota: \mathbb{Z}_{2} \hookrightarrow C^{\infty}\left(M ; \mathbb{R}^{*}\right)$ gives rise to a map of cochains

$$
\iota: \check{C}^{k}\left(M ; \mathbb{Z}_{2} ; \mathfrak{U}\right) \longrightarrow \check{C}^{k}\left(M ; C^{\infty}\left(M ; \mathbb{R}^{*}\right) ; \mathfrak{U}\right)
$$

Show that ι commutes with Čech differentials and hence induces a map in cohomology:

$$
\iota^{*}: \check{H}^{k}\left(M ; \mathbb{Z}_{2} ; \mathfrak{U}\right) \longrightarrow \check{H}^{k}\left(M ; \mathbb{C}^{\infty}\left(M ; \mathbb{R}^{*}\right) ; \mathfrak{U}\right)
$$

b) Consider the map

$$
r: C^{\infty}\left(M ; \mathbb{R}^{*}\right) \hookrightarrow \mathbb{Z}_{2} ; \quad r(f)=\frac{f}{|f|}
$$

Show that r commutes with Čech differentials and hence induces a map in cohomology.

$$
r^{*}: \check{H}^{k}\left(M ; \mathbb{C}^{\infty}\left(M ; \mathbb{R}^{*}\right) ; \mathfrak{U}\right) \longrightarrow \check{H}^{k}\left(M ; \mathbb{Z}_{2} ; \mathfrak{U}\right)
$$

c) Show that r^{*} is a right and left inverse for ι^{*}.

