Differentiable manifolds – Exam 2

- 1. Write your name and student number ** clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are allowed to consult text books and class notes.
- 5. You are **not** allowed to consult colleagues, calculators, computers etc.

Some useful definitions and results

• Definition. A star shaped domain of \mathbb{R}^n is an open set $U \subset \mathbb{R}^n$ such that there is $p \in U$ with the property that if $q \in U$, then all the points in the segment connecting p and q are also in U, that is, there is p such that

$$(1-t)p + tq \in U$$
; for all $q \in U$ and all $t \in [0,1]$.

The Poincaré Lemma states

Theorem 1 (Poincaré Lemma). If U is (diffeomorphic to) a star shaped domain of \mathbb{R}^n then

$$H^k(U) = \{0\}$$
 for $k > 0$.

Questions

Exercise 1 (2.5 pt). Suppose M is a smooth n-dimensional manifold and $S \subset M$ is an embedded compact submanifold. Suppose further that there is a smooth vector field X defined on a neighborhood of S and which is nowhere tangent to S. Show that there exists $\varepsilon > 0$ such that the flow of X restricts to a smooth embedding

$$\Phi: (-\varepsilon, \varepsilon) \times S \longrightarrow M; \qquad \Phi(t, p) = e^{tX}(p).$$

Exercise 2 (2.5 pt). Let $\alpha \in \Omega^2(\mathbb{R}^3)$ be given by

$$\alpha = x dy dz$$

Compute the integral of α over

- a) The unit sphere;
- b) The torus parametrized by

$$S^1 \times S^1 \longrightarrow \mathbb{R}^3$$
; $(\theta, \varphi) \mapsto ((\cos \theta + 2) \cos \varphi, (\cos \theta + 2) \sin \varphi, \sin \theta)$.

Exercise 3 (2.5 pt). Consider the form $\rho \in \Omega^1(\mathbb{R}^2 \setminus \{0\})$

$$\rho = \frac{xdy - ydx}{x^2 + y^2}$$

a) Show that $d\rho = 0$;

- b) Compute the integral of ρ over the circle of radius r centered at the origin.
- c) Compute the integral of ρ over the paths drawn below in \mathbb{R}^2 , both traced counterclockwise.

d) Does ρ represent a nontrivial cohomology class in $\mathbb{R}^2 \setminus \{0\}$? Does ρ represent a nontrivial class in

$$\mathbb{R}^2 \setminus \{(x,0) : x \ge 0\}$$
?

Exercise 4 (2.5 pt). Let $\Omega^{\bullet}(M)$ be the graded vector space of differential forms on M and $\mathfrak{L}(\Omega^{\bullet}(M))$ be the graded space of linear endomorphisms of $\Omega^{\bullet}(M)$ endowed with the graded commutator as a bracket

$$\{\cdot,\cdot\}: \mathfrak{L}^{k}(\Omega^{\bullet}(M)) \times \mathfrak{L}^{l}(\Omega^{\bullet}(M)) \longrightarrow \mathfrak{L}^{k+l}(\Omega^{\bullet}(M)),$$
$$\{A, B\} = AB + (-1)^{kl+1}BA.$$

Recall that interior product by a vector field $X \in \mathfrak{X}(M)$ is a map of degree -1, wedge product by a 1-form ξ and the exterior derivative are maps of degree +1. To simplify notation we denote $\xi \wedge \varphi$ simply by $\xi \cdot \varphi$ and $\iota_X \varphi$ by $X \cdot \varphi$. The point of this exercise is to define a natural bracket on $\Gamma(TM \oplus T^*M)$ and determine some of its basic properties.

a) Show that for all $\varphi \in \Omega^{\bullet}(M)$, $X, Y \in \mathfrak{X}(M)$ and $\xi, \eta \in \Omega^{1}(M)$,

$$\{\{X+\xi,d\},Y+\eta\}\cdot\varphi = ([X,Y]+(\mathcal{L}_X\eta)-(\iota_Yd\xi))\cdot\varphi.$$

Define a bracket $\llbracket \cdot, \cdot \rrbracket : \Gamma(TM \oplus T^*M) \times \Gamma(TM \oplus T^*M) \longrightarrow \Gamma(TM \oplus T^*M)$ by

$$\llbracket X + \xi, Y + \eta \rrbracket = [X, Y] + \mathcal{L}_X \eta - \iota_Y d\xi$$

for $X, Y \in \mathfrak{X}(M)$ and $\xi, \eta \in \Omega^1(M)$.

b) Show that for $f \in C^{\infty}(M)$

$$[\![X + \xi, f(Y + \eta)]\!] = f[\![X + \xi, Y + \eta]\!] + (\mathcal{L}_X f)(Y + \eta).$$

c) Show that

$$[X + \xi, X + \xi] = d(\xi(X)).$$

d) Show that if $\omega \in \Omega^2(M)$ is a closed form then

$$\llbracket X + \xi + \iota_X \omega, Y + \eta + \iota_Y \omega \rrbracket = \llbracket X + \xi, Y + \eta \rrbracket + \iota_{[X,Y]} \omega.$$