Geometry and Topology – Exam 1

Notes:

- 1. Write your name and student number ** clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are allowed to consult text books and class notes.
- 5. You are not allowed to consult colleagues, calculators, computers etc.
- 6. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

Questions

Exercise 1 (2.0 pt). In each list of spaces below, decide which spaces are homotopy equivalent to each other (remember to justify your answer)

a)

 $T^2 \# T^2$, $S^1 \times S^1 \times S^1 \times S^1$, $T^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2$, $\mathbb{K} \# \mathbb{K}$.

where $T^2 = S^1 \times S^1$ denotes the 2-torus and K denotes the Klein bottle.

b)

 $T^2 \setminus \{p\}, \qquad S^1 \vee S^1, \qquad \mathbb{K} \setminus \{p\}, \qquad S^2 \setminus \{p_1, p_2, p_3\},$

Exercise 2 (1.0 pt). A deformation retract in the weak sense of a space X onto a subspace $A \subset X$ is a homotopy $F: I \times X \to X$ such that

- $F(0, x) = x, \forall x \in X,$
- $F(t, x) \in A, \forall x \in A,$
- $F(1,x) \in A, \forall x \in X.$

Show that if X deform retracts onto $A \subset X$ in the weak sense, the inclusion map $\iota \colon A \to X$ is a homotopy equivalence.

Exercise 3 (1.0 pt). Show that a homotopy equivalence $f: X \to Y$ induces a bijection between the set of path components of X and the set of path components of Y and that f restricts to a homotopy equivalence from each path component of X to the corresponding path component of Y.

Exercise 4 (2.0 pt). We can regard $\pi_1(X, x_0)$ as the set of base point preserving homotopy classes of maps $(S^1, s_0) \to (X, x_0)$. Let $[S^1, X]$ be the set of homotopy classes of maps $S^1 \to X$ without conditions on basepoints. Thus there is a natural map $\Phi: \pi_1(X, x_0) \to [S^1, X]$ obtained by ignoring basepoints. Show that

- a) If X is path connected, then Φ is onto.
- b) If $f, g: (S^1, s_0) \to (X, x_0)$, then $\Phi([f]) = \Phi([g])$ if and only if [f] and [g] are conjugate in $\pi_1(X, x_0)$.
- c) Conclude that if X is path connected, $[S^1, X]$ is in bijection with the set of conjugacy classes in $\pi_1(X, x_0)$.

Exercise 5 (2.0 pt). Compute the fundamental group of the following spaces.

- a) The quotient space of S^2 obtained by identifying the north and south poles to a single point.
- b) The quotient space of the disjoint union of two 2-tori obtained by identifying the circle $\{x_0\} \times S^1$ in one torus with the same circle in the other torus

Exercise 6 (2.0 pt). Let $\tilde{X} \to X$ and $\tilde{Y} \to Y$ be simply connected covering spaces of X and Y. Show that if X and Y are path connected, locally path connected and $X \simeq Y$, then $\tilde{X} \simeq \tilde{Y}$.