Exam: Representations of finite groups (WISB324)

Wednesday June 29, 9.00-12.00 h.

- You are allowed to bring one piece of $A 4$-paper, wich may contain formulas, theorems or whatever you want (written/printed on both sides of the paper).
- All exercise parts having a number (\cdot) are worth 1 point, except for $1(\mathrm{f}), 1(\mathrm{~h}), 2(\mathrm{e})$, $3(\mathrm{~b})$ and $3(\mathrm{f})$ which are worth 2 points. Exercise 1(i) is a bonus exercise, which is worth 2 points.
- Do not only give answers, but also prove statements, for instance by refering to a theorem in the book.

Good luck.

1. Let G be a non-commutative group of order 8 .
(a) Show that there is no element of order 8 .
(b) Show that there are elements of G that have order 4 .
(c) Show that G has exactly 5 conjugacy classes and determine the degrees of the irreducible representations of G.

Now let $G=Q=\{ \pm 1, \pm i, \pm j, \pm k\}$ be the Quaternion group, satisfying the relations

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j .
$$

(d) Determine all conjugacy classes of Q.
(e) Show that $\langle i\rangle$ (the group generated by i) is a normal subgroup of Q.
(f) Calculate the character table of Q.
(g) Determine the character of the regular representation of Q.
(h) Determine all normal subgroups of Q.
(i) (Bonus exercise) Find explicitly the matrices in $G L(n, \mathbb{C})$ for all elements of the irreducible representation of Q for which n is maximal.
2. Let $\mathbb{F}=\mathbb{C}$ and let G be a group.
(a) Let $x \in G$, show that $C_{x}=\sum_{g \in x^{G}} g$ is in the center $Z(\mathbb{C} G)$ of the group algebra $\mathbb{C} G$.
(b) Show that $C_{x}=C_{y}$ if and only if $y \in x^{G}$.
(c) Let G have k conjugacy classes and let $x_{1}, x_{2}, \ldots, x_{k}$ be representatives of these different conjugacy classes. Show that $C_{x_{1}}, C_{x_{2}}, \cdots, C_{x_{k}}$ are linearly independent.
(d) Let $\chi_{1}, \chi_{2}, \ldots \chi_{\ell}$ be the collection of all irreducible characters of G, prove that $D_{i}=\sum_{g \in G} \chi_{i}\left(g^{-1}\right) g$ is in $Z(\mathbb{C} G)$.
(e) Prove that

$$
\operatorname{span}\left(C_{x_{1}}, C_{x_{2}}, \ldots, C_{x_{k}}\right)=\operatorname{span}\left(D_{1}, D_{2}, \ldots, D_{\ell}\right) .
$$

(f) Prove that the elements D_{i} are also linearly independent.
3. Let $H \leq G$ and let χ be a character of H.
(a) Prove that $\chi \uparrow G(1)=[G: H] \chi(1)$.
(b) Which irreducible character of the Quaternion group Q of exercise 1 is induced by a character of one of its subgroups?
(c) Let H be in the center $Z(G)$ of G, prove that

$$
\chi \uparrow G(g)= \begin{cases}{[G: H] \chi(g)} & \text { if } g \in H \\ 0 & \text { if } g \notin H .\end{cases}
$$

From now on let $G=D_{4 n}=\left\langle a, b \mid a^{2 n}=b^{2}=1, a b=b a^{-1}\right\rangle$.
(d) Determine the center $Z\left(D_{4 n}\right)$ of $D_{4 n}$.
(e) Let $n \geq 2, H=Z\left(D_{4 n}\right)$ and χ be the non-trivial irreducible character of H, determine the values of $\chi \uparrow G(g)$ for $g \in D_{4 n}$.
(f) The irreducible characters of $D_{4 n}(n \geq 2)$ have the following values on 1 and a^{n} :

- $\left(\psi(1), \psi\left(a^{n}\right)\right)=(1,1)$,
- $\left(\psi(1), \psi\left(a^{n}\right)\right)=(1,-1)$,
- $\left(\psi(1), \psi\left(a^{n}\right)\right)=(2,2)$,
- $\left(\psi(1), \psi\left(a^{n}\right)\right)=(2,-2)$.

Determine in all 4 cases the multiplicity of ψ in $\chi \uparrow G$.

