FINAL EXAM 'INLEIDING IN DE GETALTHEORIE'

Thursday, 8th November 2018, 13.30 pm - 16.30 pm

Question 1 (4 points)
a) Find the continued fraction expansion to $\sqrt{41}$.
b) What number has the continued fraction expansion

$$
\langle 4, \overline{1,3,1,8}\rangle \quad ?
$$

Question 2 (4 points)
a) Find all integer solutions to the following system of congruences (i.e. integers x that simultaneously solve all of the following congruences):

$$
\begin{gathered}
x \equiv 3 \bmod 6 \\
x \equiv 6 \bmod 7 \\
x \equiv 7 \bmod 143 .
\end{gathered}
$$

b) Does the congruence

$$
x^{2}-2 x+3 \equiv 0 \bmod 105
$$

have a solution?

Question 3 (4 points)
For a natural number m let $\phi(m)$ be Euler's phi-function, i.e. the number of invertible residue classes modulo m.
a) For what $n \in \mathbb{N}$ do we have $\phi(n)=48$?
b) Compute the last digit of 3^{400}.

Question 4 (4 points)
Show that

$$
x \equiv a \bmod m \quad \text { and } \quad x \equiv b \bmod n
$$

have a common solution if and only if $\operatorname{gcd}(m, n) \mid b-a$, and in this case the solution is unique modulo the least common multiple of m and n.

Question 5 (4 points)
Let $a, b, c, d \in \mathbb{Z}$ and $a \equiv d \equiv 4 \bmod 9$. Assume that the equation

$$
a x^{3}+3 b x^{2} y+3 c x y^{2}+d y^{3}=z^{3}
$$

has a nontrivial integer solution in x, y, z (i.e. a solution where not all of x, y, z are equal to zero). Show that in this case it also has an integer solution with $3 \nmid x y$.

Question 6 (4 points)

Assume that the $a b c$-conjecture holds. Show that there are only finitely many solutions $a, b, c, d, e, f \in \mathbb{N}$ to the equation

$$
a^{8} b^{9}+c^{8} d^{9}=e^{8} f^{9}
$$

which satisfy $\operatorname{gcd}(a b, c d, e f)=1$. Reminder: the natural numbers \mathbb{N} do not contain 0 in the way that we defined it in the course.

Note: A simple non-programmable calculator is allowed for the exam.

