1ST EXAM 'INLEIDING IN DE GETALTHEORIE'

Tuesday, 27th September 2016, 9 am - 10 am

Question 1

Find all $x \in \mathbb{Z}$ such that

$$
x \equiv 1 \bmod 2, \quad x \equiv 3 \bmod 5, \quad \text { and } \quad x \equiv 5 \bmod 7 .
$$

Question 2

Let $k \in \mathbb{N}$. We define $\sigma_{k}(n):=\sum_{d \mid n} d^{k}$. Show that $\sigma_{k}(n)$ is a multiplicative function, i.e. $\sigma_{k}(m n)=\sigma_{k}(m) \sigma_{k}(n)$ for natural numbers m, n with $\operatorname{gcd}(m, n)=1$.

Question 3

Let $k \geq 1$. Show that there is a natural number x such that all of the numbers $x, x+1, x+2, \ldots, x+k$ have a non-trivial fourth power divisor, i.e. such that for every $0 \leq i \leq k$ there is an integer $d_{i} \geq 2$ with $d_{i}^{4} \mid(x+i)$.

Question 4

Let $n \geq 2$. Show that

$$
\sum_{\substack{m=1 \\ \operatorname{gcd}(m, n)=1}}^{n-1} m=\frac{1}{2} n \phi(n) .
$$

Note: Only pen and paper are allowed for the exam!

