DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UU. MADE AVAILABLE IN ELECTRONIC FORM BY THE \mathcal{BC} OF A-Eskwadraat IN 2004/2005, THE COURSE WISB312 WAS GIVEN BY KARMA DAJANI.

Measure and Integration, re-exam (WISB312) September 1, 2005

Question 1

Let E, F be sets and let \mathcal{C} be a collection of subsets of F. Suppose $T : E \to F$ is a function, and let

$$T^{-1}(\sigma(\mathcal{C})) = \{T^{-1}A : A \in \sigma(\mathcal{C})\}$$

where $\sigma(\mathcal{C})$ is the σ -algebra over F generated by \mathcal{C} . Show that $T^{-1}(\sigma(\mathcal{C}))$ is a σ -algebra over E, and that $T^{-1}(\sigma(\mathcal{C})) = \sigma(T^{-1}\mathcal{C})$, where $T^{-1}\mathcal{C} = \{T^{-1}A : A \in \mathcal{C}\}.$

Question 2

Suppose that μ and ν and λ are finite measures on (E, \mathcal{B}) such that $\mu \ll \nu$ and $\nu \ll \lambda$. Show that $\mu \ll \lambda$, and that $\frac{d\mu}{d\lambda} = \frac{d\mu}{d\nu} \cdot \frac{d\nu}{d\lambda} \lambda$ a.e.

Question 3

Let ν be a σ -finite measure on (E, \mathcal{B}) , and suppose $E = \bigcup_{n=1}^{\infty} E_n$, where $\{E_n\}$ is a collection of pairwise disjoint measurable sets such that $\nu(E_n) < \infty$ for all $n \ge 1$. Define μ on \mathcal{B} by $\mu(\Gamma) = \sum_{n=1}^{\infty} 2^{-n} \nu(\Gamma \cap E_n) / (\nu(E_n) + 1).$

- a) Prove that μ is a finite measure on (E, \mathcal{B}) which is equivalent to ν .
- b) Determine explicitly two measurable functions f and g such that $f = \frac{d\mu}{d\nu}$ and $g = \frac{d\nu}{d\mu} \nu$ a.e.

Question 4

Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ the Lebesgue measure.

a) Let $f : \mathbb{R} \to \overline{\mathbb{R}}$ be measurable, and suppose $\int_{\mathbb{R}} f(x) d\lambda(x)$ exists. Show that for all $a \in \mathbb{R}$, one has

$$\int_{\mathbb{R}} f(x-a)d\lambda(x) = \int_{\mathbb{R}} f(x)d\lambda(x)$$

b) Let $k, g \in L^1(\lambda)$. Define $F : \mathbb{R}^2 \to \mathbb{R}$, and $h : \mathbb{R} \to \overline{\mathbb{R}}$ by

$$F(x,y) = k(x-y)g(y)$$
 and $h(x) = \int_{\mathbb{R}} F(x,y)d\lambda(y)$

- 1. Show that F is measurable.
- 2. Show that $\lambda(|h| = \infty) = 0$ and $\int_{\mathbb{R}} |h(x)| d\lambda(x) \leq \left(\int_{\mathbb{R}} |k(x)| d\lambda(x) \right) \left(\int_{\mathbb{R}} |g(y)| d\lambda(y) \right).$

Question 5

Consider the measure space $([0, \infty), \mathcal{B}, \lambda)$, where \mathcal{B} and λ are the restriction of the Borel σ -algebra and Lebesgue measure to the interval $[0, \infty)$. Define for $n \ge 1$, $f_n : [0, \infty) \to \mathbb{R}$ by

$$f_n(x) = \begin{cases} n + \pi & \text{if } n \le x \le n + \frac{1}{2n} \\ \\ \pi & \text{otherwise.} \end{cases}$$

- a) Prove that $f_n \to \pi \ \lambda$ a.e. and in λ -measure.
- b) Prove that $\lim_{m\to\infty} \lambda(\sup_{n\geq m} |f_n \pi| \geq \epsilon) = \infty$ for all $\epsilon > 0$.