INSTITUTE OF MATHEMATICS, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, UU. MADE AVAILABLE IN ELECTRONIC FORM BY THE \mathcal{BC} OF A-Eskwadraat IN 2004/2005, THE COURSE WISB 312 WAS GIVEN BY DR. K. DAJANI.

Measure and Integration (WISB 312) 19 April 2005

Question 1

Let $f, g: [a, b] \to \mathbb{R}$ be bounded Riemann integrable functions. Show that fg is Riemann integrable. (Hint: express fg in terms of (f + g) and (f - g)).

Question 2

Consider the measure space $(\mathbb{R}, \overline{\mathcal{B}}_{\mathbb{R}}, \lambda)$, where $\overline{\mathcal{B}}_{\mathbb{R}}$ is the Lebesgue σ -algebra over \mathbb{R} , and λ is Lebesgue measure. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by

$$f_n(x) = \sum_{k=0}^{2^n - 1} \frac{k}{2^n} \cdot \mathbf{1}_{[k/2^n, (k+1)/2^n)}, \ n \ge 1.$$

- a) Show that f_n is measurable, and $f_n(x) \leq f_{n+1}(x)$ for all $x \in X$.
- b) Let $f(x) = \lim_{n \to \infty} f_n(x)$, for $x \in \mathbb{R}$. Show that $f : \mathbb{R} \to \mathbb{R}$ is measurable.
- c) Show that $\lim_{n\to\infty} \int_{\mathbb{R}} f_n(x) d\lambda(x) = \frac{1}{2}$.

Question 3

Let $M \subset \mathbb{R}$ be a non-Lebesgue measurable set (i.e. $M \notin \overline{\mathcal{B}}_{\mathbb{R}}$.). Define $A = \{(x, x) \in \mathbb{R}^2 : x \in M\}$, and let $g : \mathbb{R} \to \mathbb{R}^2$ be given by g(x) = (x, x).

- a) Show that $A \in \overline{\mathcal{B}}_{\mathbb{R}^2}$. i.e. A is Lebesgue measurable. (Hint: use the fact that Lebesgue measure is rotation invariant).
- b) Show that g is a Borel-measurable function, i.e. $g^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for each $B \in \mathcal{B}_{\mathbb{R}^2}$.
- c) Show that $A \notin \mathcal{B}_{\mathbb{R}^2}$, i.e. A is not Borel measurable.

Question 4

Let $\mathcal{M} = \{E \subseteq \mathbb{R} : |A|_e = |A \cap E|_e + |A \cap E^c|_e \text{ for all } A \subseteq \mathbb{R}\}$, where $|A|_e$ denotes the outer Lebesgue measure of A.

- a) Show that \mathcal{M} is an algebra over \mathbb{R} . (Hint: $A \cap (E_1 \cup E_2) = (A \cap E_1) \bigcup (A \cap E_2 \cap E_1^c)$).
- b) Prove by induction that if $E_1, \dots, E_n \in \mathcal{M}$ are pairwise disjoint, then for any $A \subseteq \mathbb{R}$

$$|A \cap (\bigcup_{i=1}^{n} E_i)|_e = \sum_{i=1}^{n} |A \cap E_i|_e$$

c) Show that if $E_1, E_2, \dots \in \mathcal{M}$ is a countable collection of disjoint elements of \mathcal{M} , then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$.

- d) Show that \mathcal{M} is a σ -algebra over \mathbb{R} .
- e) Let $C = \{(a, \infty) : a \in \mathbb{R}\}$. Show that $C \subseteq M$. Conclude that $\mathcal{B}_{\mathbb{R}} \subseteq M$, where $\mathcal{B}_{\mathbb{R}}$ denotes the Borel σ -algebra over \mathbb{R} .