Institute of Mathematics, Faculty of Mathematics and Computer Science, UU.
Made available in electronic form by the $\mathcal{T}_{\mathcal{B}} \mathcal{C}$ of A - Eskwadraat In 2004/2005, the course WISB 312 was given by Dr. K. Dajani.

Measure and Integration (WISB 312) 19 April 2005

Question 1

Let $f, g:[a, b] \rightarrow \mathbb{R}$ be bounded Riemann integrable funcions. Show that $f g$ is Riemann integrable. (Hint: express $f g$ in terms of $(f+g)$ and $(f-g))$.

Question 2

Consider the measure space $\left(\mathbb{R}, \overline{\mathcal{B}}_{\mathbb{R}}, \lambda\right)$, where $\overline{\mathcal{B}}_{\mathbb{R}}$ is the Lebesgue σ-algebra over \mathbb{R}, and λ is Lebesgue measure. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)=\sum_{k=0}^{2^{n}-1} \frac{k}{2^{n}} \cdot 1_{\left[k / 2^{n},(k+1) / 2^{n}\right)}, n \geq 1
$$

a) Show that f_{n} is measurable, and $f_{n}(x) \leq f_{n+1}(x)$ for all $x \in X$.
b) Let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$, for $x \in \mathbb{R}$. Show that $f: \mathbb{R} \rightarrow \mathbb{R}$ is measurable.
c) Show that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(x) d \lambda(x)=\frac{1}{2}$.

Question 3

Let $M \subset \mathbb{R}$ be a non-Lebesgue measurable set (i.e. $M \notin \overline{\mathcal{B}}_{\mathbb{R}}$.). Define $A=\left\{(x, x) \in \mathbb{R}^{2}: x \in M\right\}$, and let $g: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be given by $g(x)=(x, x)$.
a) Show that $A \in \overline{\mathcal{B}}_{\mathbb{R}^{2}}$. i.e. A is Lebesgue measurable. (Hint: use the fact that Lebesgue measure is rotation invariant).
b) Show that g is a Borel-measurable function, i.e. $g^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$ for each $B \in \mathcal{B}_{\mathbb{R}^{2}}$.
c) Show that $A \notin \mathcal{B}_{\mathbb{R}^{2}}$, i.e. A is not Borel measurable.

Question 4

Let $\mathcal{M}=\left\{E \subseteq \mathbb{R}:|A|_{e}=|A \cap E|_{e}+\left|A \cap E^{c}\right|_{e}\right.$ for all $\left.A \subseteq \mathbb{R}\right\}$, where $|A|_{e}$ denotes the outer Lebesgue measure of A.
a) Show that \mathcal{M} is an algebra over \mathbb{R}. (Hint: $\left.A \cap\left(E_{1} \cup E_{2}\right)=\left(A \cap E_{1}\right) \bigcup\left(A \cap E_{2} \cap E_{1}^{c}\right)\right)$.
b) Prove by induction that if $E_{1}, \cdots, E_{n} \in \mathcal{M}$ are pairwise disjoint, then for any $A \subseteq \mathbb{R}$

$$
\left|A \cap\left(\bigcup_{i=1}^{n} E_{i}\right)\right|_{e}=\sum_{i=1}^{n}\left|A \cap E_{i}\right|_{e}
$$

c) Show that if $E_{1}, E_{2}, \cdots \in \mathcal{M}$ is a countable collection of disjoint elements of \mathcal{M}, then $\bigcup_{i=1}^{\infty} E_{i} \in \mathcal{M}$.
d) Show that \mathcal{M} is a σ-algebra over \mathbb{R}.
e) Let $\mathcal{C}=\{(a, \infty): a \in \mathbb{R}\}$. Show that $\mathcal{C} \subseteq \mathcal{M}$. Conclude that $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{M}$, where $\mathcal{B}_{\mathbb{R}}$ denotes the Borel σ-algebra over \mathbb{R}.

