Measure and Integration: Practice Final Exam 2020-21

(1) Consider the measure space $[1, \infty), \mathcal{B}([1, \infty]), \lambda$ where $\mathcal{B}([1, \infty])$ is the Borel σ -algebra and λ is the Lebesgue measure restricted to $[1, \infty)$. Show that

$$\lim_{n \to \infty} \int_{[1,\infty)} \frac{n \sin(x/n)}{x^3} \, d\lambda(x) = 1$$

(Hint: $\lim_{x \to 0} \sin(x)/x = 1$)

- (2) Let (X, \mathcal{A}, μ) be a measure space, and $p, q \in (1, \infty)$ and $r \ge 1$ be such that 1/r = 1/p + 1/q. Show that if $f \in \mathcal{L}^p(\mu)$ and $g \in \mathcal{L}^q(\mu)$, then $fg \in \mathcal{L}^r(\mu)$ and $||fg||_r \le ||f||_p ||g||_q$.
- (3) Consider the function $u: (1,2) \times \mathbb{R} \to \mathbb{R}$ given by $u(t,x) = e^{-tx^2} \cos x$. Let λ denotes Lebesgue measure on \mathbb{R} , show that the function $F: (1,2) \to \mathbb{R}$ given by $F(t) = \int_{\mathbb{R}} e^{-tx^2} \cos x \, d\lambda(x)$ is differentiable.
- (4) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ Lebesgue measure. Let $k, g \in \mathcal{L}^1(\lambda)$ and define $F : \mathbb{R}^2 \to \mathbb{R}$, and $h : \mathbb{R} \to \overline{\mathbb{R}}$ by

$$F(x,y) = k(x-y)g(y).$$

- (a) Show that F is measurable.
- (b) Show that $F \in \mathcal{L}^1(\lambda \times \lambda)$, and

$$\int_{\mathbb{R}\times\mathbb{R}} F(x,y)d(\lambda\times\lambda)(x,y) = \left(\int_{\mathbb{R}} k(x)d\lambda(x)\right) \left(\int_{\mathbb{R}} g(y)d\lambda(y)\right).$$

- (5) Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra and λ is Lebesgue measure. Let $f \in \mathcal{L}^1(\lambda)$ and define for h > 0, the function $f_h(x) = \frac{1}{h} \int_{[x,x+h]} f(t) d\lambda(t)$.
 - (a) Show that f_h is Borel measurable for all h > 0.
 - (b) Show that $f_h \in \mathcal{L}^1(\lambda)$ and $||f_h||_1 \le ||f||_1$.
- (6) Let (X, \mathcal{A}, μ) be a measure space, and $p \in [1, \infty)$. Let $f, f_n \in \mathcal{L}^p(\mu)$ satisfy $\lim_{n \to \infty} ||f_n f||_p = 0$, and $g, g_n \in \mathcal{M}(\mathcal{A})$ satisfy $\lim_{n \to \infty} g_n = g \mu$ a.e. Assume that $|g_n| \leq M$, where M > 0 is a real number. Show that $\lim_{n \to \infty} ||f_n g_n - fg||_p = 0$.