Measure and Integration: Solutions Mid-Term, 2020-21

- (1) Let X be a set and μ, ν two **outer measures** on X, i.e. $\mu, \nu : \mathcal{P}(X) \to [0, \infty]$ satisfying the three properties:
 - (i) $\mu(\emptyset) = \nu(\emptyset) = 0$,
 - (ii) if $A, B \in \mathcal{P}(X)$ with $A \subseteq B$, then $\mu(A) \leq \mu(B)$ and $\nu(A) \leq \nu(B)$ (μ and ν are monotone),
 - (iii) if (A_n) is a sequence in $\mathcal{P}(X)$, then $\mu(\bigcup_n A_n) \leq \sum_n \mu(A_n)$ and $\nu(\bigcup_n A_n) \leq \sum_n \nu(A_n)$.

Define $\rho : \mathcal{P}(X) \to [0, \infty]$ by $\rho(A) = \max(\mu(A), \nu(A))$. Show that ρ is an outer measure on X, i.e. satisfies properties (i), (ii) and (iii). (2 pts)

Proof: $\rho(\emptyset) = 0$ is immediate since $\max(0, 0) = 0$. The second property is also immediate since if $A \subseteq B$, then $\mu(A) \leq \mu(B)$ and $\nu(A) \leq \nu(B)$, hence

 $\rho(A) = \max(\mu(A), \nu(A)) \le \max(\mu(B), \nu(B)) = \rho(B).$

Now let $(A_n)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{P}(X)$, then

I

$$\begin{split} \rho(\bigcup_{n=1}^{\infty} A_n) &= \max\left(\mu(\bigcup_{n=1}^{\infty} A_n), \nu(\bigcup_{n=1}^{\infty} A_n)\right) \\ &\leq \max\left(\sum_{n=1}^{\infty} \mu(A_n), \sum_{n=1}^{\infty} \nu(A_n)\right) \\ &\leq \sum_{n=1}^{\infty} \max(\mu(A_n), \nu(A_n)) \\ &= \sum_{n=1}^{\infty} \rho(A_n), \end{split}$$

where the second inequality follows from the fact that $\sum_{n=1}^{\infty} \mu(A_n) \leq \sum_{n=1}^{\infty} \max(\mu(A_n), \nu(A_n))$, and $\sum_{n=1}^{\infty} \nu(A_n) \leq \sum_{n=1}^{\infty} \max(\mu(A_n), \nu(A_n))$. Thus, ρ is an outer measure on X.

- (2) Consider the measure space $([0,1], \mathcal{B}([0,1]), \lambda)$, where $\mathcal{B}([0,1])$ is the Borel σ -algebra restricted to [0,1] and λ is the restriction of Lebesgue measure on [0,1]. Define a map $u:[0,1] \rightarrow [0,1]$ by $u(x) = 2x \cdot \mathbb{I}_{[0,\frac{1}{n}]} + (2-2x) \cdot \mathbb{I}_{[\frac{1}{n},1]}$, where \mathbb{I}_A denotes the indicator function of the set A.
 - (a) Show that u is $\mathcal{B}([0,1])/\mathcal{B}([0,1])$ measurable, and determine the image measure $u(\lambda) = \lambda \circ u^{-1}$. (2 pts)
 - (b) Let $\mathcal{C} = \left\{ A \in \mathcal{B}([0,1]) : \lambda \left(u^{-1}(A) \Delta A \right) = 0 \right\}$. Show that \mathcal{C} is a σ -algebra. (Note that $u^{-1}(A) \Delta A = \left(u^{-1}(A) \smallsetminus A \right) \bigcup \left(A \smallsetminus u^{-1}(A) \right)$. (2.5 pts)

Proof(a): To show u is $\mathcal{B}([0,1])/\mathcal{B}([0,1])$ measurable, it is enough to consider inverse images of intervals of the form $[a,b] \subset [0,1]$. Now,

$$u^{-1}([a,b)) = \left[\frac{a}{2}, \frac{b}{2}\right) \bigcup \left[\frac{2-b}{2}, \frac{2-a}{2}\right) \in \mathcal{B}([0,1])$$

Thus, u is measurable. Another quick way of showing measurability is to notice that the functions $x \to 2x$ and $x \to 2-2x$ are continuous and hence Borel measurable. Furthermore $\mathbb{I}_{[0,\frac{1}{2})}$ and $\mathbb{I}_{[\frac{1}{2},1]}$

are Borel measurable since $[0, \frac{1}{2}), [\frac{1}{2}, 1] \in \mathcal{B}([0, 1])$. Since products and sums of measurable functions are measurable, we see that u is also Borel measurable.

We claim that $u(\lambda) = \lambda$. To prove this, we use Theorem 5.7. Notice that $\mathcal{B}([0,1])$ is generated by the collection $\mathcal{G} = \{[a,b]: 0 \le a \le b \le 1\} \cup \{\emptyset\}$ which is closed under finite intersections. Now,

$$u(\lambda)([a,b]) = \lambda(u^{-1}([a,b]))$$

= $\lambda([\frac{a}{2}, \frac{b}{2}]) + \lambda([\frac{2-b}{2}, \frac{2-a}{2}])$
= $b-a = \lambda([a,b]).$

Since the constant sequence ([0,1]) is exhausting, belongs to \mathcal{G} and $\lambda([0,1]) = u(\lambda([0,1]) = 1 < \infty$, we have by Theorem 5.7 that $u(\lambda) = \lambda$.

Proof(b): We check the three conditions for a collection of sets to be a σ -algebra. Firstly, the empty set $\emptyset \in \mathcal{B}([0,1])$ and $u^{-1}(\emptyset) = \emptyset$, hence $\lambda \left(u^{-1}(\emptyset) \Delta \emptyset \right) = \lambda(\emptyset) = 0$, so $\emptyset \in \mathcal{C}$. Secondly, Let $A \in \mathcal{C}$, then $\lambda \left(u^{-1}(A) \Delta A \right) = 0$. We have

$$\lambda \Big(u^{-1}(A)^c \Delta A^c \Big) = \lambda \Big(u^{-1}(A) \Delta A \Big) = 0,$$

with $A^c \in \mathcal{B}([0,1])$, hence $A^c \in \mathcal{C}$. Thirdly, let (A_n) be a sequence in \mathcal{C} , then $A_n \in \mathcal{B}([0,1))$ and $\lambda(u^{-1}(A)_n \Delta A_n) = 0$ for each n. Since $\mathcal{B}([0,1])$ is a σ -algebra, we have $\bigcup_n A_n \in \mathcal{B}([0,1])$, and

$$u^{-1}(\bigcup_n A_n) = \bigcup_n u^{-1}(A_n).$$

An easy calculation shows that

$$u^{-1}(\bigcup_{n}A_{n})\Delta\bigcup_{n}A_{n}\subseteq\bigcup_{n}\left(u^{-1}(A_{n})\Delta A_{n}\right).$$

By σ -subadditivity and monotonicity of λ , we have

$$\lambda \Big(u^{-1} \Big(\bigcup_m A_m \big) \Delta \bigcup_n A_n \Big) \Big) \le \lambda \Big(\bigcup_n \Big(u^{-1} (A_n) \Delta A_n \Big) \Big) \le \sum_n \lambda \Big(u^{-1} (A_n) \Delta A_n \Big) = 0.$$

Thus, $\bigcup A_n \in \mathcal{C}$. This shows that \mathcal{C} is a σ -algebra.

(3) Let (X, \mathcal{A}) be a measurable space and $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{A}$, a partition of X, i.e. $A_n \in \mathcal{A}$ are pairwise disjoint and $X = \bigcup_{n \in \mathbb{N}} A_n$. Consider the function $u : X \to \mathbb{R}$ defined by

$$u(x) = \sum_{j \in \mathbb{N}} 2^j \cdot \mathbb{I}_{A_j}(x)$$

- (a) Show that $u \in \mathcal{M}(\mathcal{A})$, i.e. u is $\mathcal{A}/\mathcal{B}(\mathbb{R})$ measurable. (1.5 pt)
- (b) Recall that $\sigma(u) = \{u^{-1}(B) : B \in \mathcal{B}(\mathbb{R})\}\$ is the smallest σ -algebra on X making u Borel measurable. Prove that

$$\sigma(u) = \sigma(\{A_n : n \in \mathbb{N}\}),$$

where $\sigma(\{A_n : n \in \mathbb{N}\})$ is the smallest σ -algebra generated by the countable collection $\{A_n : n \in \mathbb{N}\}$. (2 pts)

Proof(a): For each $n \in \mathbb{N}$, define $u_n(x) = \sum_{j=1}^n 2^j \cdot \mathbb{I}_{A_j}(x)$. Since $A_j \in \mathcal{A}$, we see that $(u_n)_{n \in \mathbb{N}}$ is an increasing sequence of non-negative measurable simple functions, i.e. $u_n \in \mathcal{E}^+(\mathcal{A}) \subseteq \mathcal{M}^+(\mathcal{A})$, and $u(x) = \lim_{n \to \infty} u_n(x) = \sup_{n \in \mathbb{N}} u_n(x)$.

By Corollary 8.10, it follows that $u \in \mathcal{M}(\mathcal{A})$, i.e. is $\mathcal{A}/\mathcal{B}(\mathbb{R})$ measurable.

Proof(b): Note that $A_n = u^{-1}(\{2^n\})$ and $\{2^n\} \in \mathcal{B}(\mathbb{R})$. Hence, $A_n \in \sigma(u)$ for all $n \in \mathbb{N}$, implying that $\sigma(\{A_n : n \in \mathbb{N}\}) \subseteq \sigma(u)$. We now prove the reverse containment. Let $C \in \sigma(u)$, then

 $C = u^{-1}(B)$ for some Borel set $B \in \mathcal{B}(\mathbb{R})$. Set $N(B) = \{n \in N : 2^n \in B\}$ By definition of u, we see that

$$C = u^{-1}(B) = \bigcup_{n \in N(B)} A_n \in \sigma(\{A_n : n \in \mathbb{N}\}).$$

This shows that $\sigma(u) \subseteq \sigma(\{A_n : n \in \mathbb{N}\})$ and hence $\sigma(u) = \sigma(\{A_n : n \in \mathbb{N}\})$.