Measure and Integration: Mid-Term, 2020-21

- (1) Let X be a set and μ, ν two **outer measures** on X, i.e. $\mu, \nu : \mathcal{P}(X) \to [0, \infty]$ satisfying the three properties:
 - (i) $\mu(\emptyset) = \nu(\emptyset) = 0$,
 - (ii) if $A, B \in \mathcal{P}(X)$ with $A \subseteq B$, then $\mu(A) \leq \mu(B)$ and $\nu(A) \leq \nu(B)$ (μ and ν are monotone),
 - (iii) if (A_n) is a sequence in $\mathcal{P}(X)$, then $\mu(\bigcup_n A_n) \leq \sum_n \mu(A_n)$ and $\nu(\bigcup_n A_n) \leq \sum_n \nu(A_n)$.

Define $\rho : \mathcal{P}(X) \to [0, \infty]$ by $\rho(A) = \max(\mu(A), \nu(A))$. Show that ρ is an outer measure on X, i.e. satisfies properties (i), (ii) and (iii). (2 pts)

- (2) Consider the measure space $([0,1], \mathcal{B}([0,1]), \lambda)$, where $\mathcal{B}([0,1])$ is the Borel σ -algebra restricted to [0,1] and λ is the restriction of Lebesgue measure on [0,1]. Define a map $u:[0,1] \rightarrow [0,1]$ by $u(x) = 2x \cdot \mathbb{I}_{[0,\frac{1}{2})} + (2-2x) \cdot \mathbb{I}_{[\frac{1}{2},1]}$, where \mathbb{I}_A denotes the indicator function of the set A.
 - (a) Show that u is $\mathcal{B}([0,1])/\mathcal{B}([0,1])$ measurable, and determine the image measure $u(\lambda) = \lambda \circ u^{-1}$. (2 pts)
 - (b) Let $\mathcal{C} = \left\{ A \in \mathcal{B}([0,1]) : \lambda \left(u^{-1}(A) \Delta A \right) = 0 \right\}$. Show that \mathcal{C} is a σ -algebra. (Note that $u^{-1}(A) \Delta A = \left(u^{-1}(A) \smallsetminus A \right) \bigcup \left(A \smallsetminus u^{-1}(A) \right)$. (2.5 pts)
- (3) Let (X, \mathcal{A}) be a measurable space and $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{A}$, a partition of X, i.e. $A_n \in \mathcal{A}$ are pairwise disjoint and $X = \bigcup_{n \in \mathbb{N}} A_n$. Consider the function $u : X \to \mathbb{R}$ defined by

$$u(x) = \sum_{j \in \mathbb{N}} 2^j \cdot \mathbb{I}_{A_j}(x)$$

- (a) Show that $u \in \mathcal{M}(\mathcal{A})$, i.e. u is $\mathcal{A}/\mathcal{B}(\mathbb{R})$ measurable. (1.5 pts)
- (b) Recall that $\sigma(u) = \{u^{-1}(B) : B \in \mathcal{B}(\mathbb{R})\}$ is the smallest σ -algebra on X making u Borel measurable. Prove that

$$\sigma(u) = \sigma(\{A_n : n \in \mathbb{N}\}),$$

where $\sigma(\{A_n : n \in \mathbb{N}\})$ is the smallest σ -algebra generated by the countable collection $\{A_n : n \in \mathbb{N}\}$. (2 pts)