Measure and Integration Quiz Extra, 2016-17

- 1. Let X be a set and \mathcal{F} a collection of real valued functions on X satisfying the following properties:
 - (i) \mathcal{F} contains the constant functions,
 - (ii) if $f, g \in \mathcal{F}$ and $c \in \mathbb{R}$, then $f + g, fg, cf \in \mathcal{F}$,
 - (ii) if $f_n \in \mathcal{F}$, and $f = \lim_{n \to \infty} f_n$, then $f \in \mathcal{F}$.

For $A \subseteq X$, denote by $\mathbf{1}_A$ the indicator function of A, i.e.

$$\mathbf{1}_A(x) = \begin{cases} 1 & x \in A, \\ 0, & x \notin A. \end{cases}$$

Show that the collection $\mathcal{A} = \{A \subseteq X : \mathbf{1}_A \in \mathcal{F}\}$ is a σ -algebra.

- 2. Let (X, \mathcal{D}, μ) be a measure space, and let $\overline{\mathcal{D}}^{\mu}$ be the completion of the σ -algebra \mathcal{D} with respect to the measure μ (see exercise 4.13, p.29). We denote by $\overline{\mu}$ the extension of the measure μ to the σ -algebra $\overline{\mathcal{D}}^{\mu}$. Suppose $f: X \to X$ is a function such that $f^{-1}(B) \in \mathcal{D}$ and $\mu(f^{-1}(B)) = \mu(B)$ for each $B \in \mathcal{D}$. Show that $f^{-1}(\overline{B}) \in \overline{\mathcal{D}}^{\mu}$ and $\overline{\mu}(f^{-1}(\overline{B})) = \overline{\mu}(\overline{B})$ for all $\overline{B} \in \overline{\mathcal{D}}^{\mu}$.
- 3. Consider the measure space $([0, 1]\mathcal{B}([0, 1]), \lambda)$, where $\mathcal{B}([0, 1])$ is the restriction of the Borel σ -algebra to [0, 1], and λ is the restriction of Lebesgue measure to [0, 1]. Let E_1, \dots, E_m be a collection of Borel measurable subsets of [0, 1] such that every element $x \in [0, 1]$ belongs to at least n sets in the collection $\{E_j\}_{j=1}^m$, where $n \leq m$. Show that there exists a $j \in \{1, \dots, m\}$ such that $\lambda(E_j) \geq \frac{n}{m}$.
- 4. Let μ and ν be two measures on the measure space (E, \mathcal{B}) such that $\mu(A) \leq \nu(A)$ for all $A \in \mathcal{B}$. Show that if f is any non-negative measurable function on (E, \mathcal{B}) , then $\int_E f d\mu \leq \int_E f d\nu$.