Complex Functions (WISB311) 02 July 2007

Remark: The exam also had a dutch version. Because of time constraints, it is omitted here.

Question 1

Let $\alpha \in \mathbb{C}$, let $r>0$ and assume that the function f is holomorphic on an open neighborhood in \mathbb{C} of the closed disk $\bar{D}_{r}:=\bar{D}(\alpha ; r):|z-\alpha| \leq r$
a) Show that for all $z_{1}, z_{2} \in D_{r}:=D(\alpha ; r)$,

$$
f\left(z_{1}\right)-f\left(z_{2}\right)=\frac{z_{1}-z_{2}}{2 \pi i} \int_{\partial D_{r}} \frac{f(w)}{\left(w-z_{1}\right)\left(w-z_{2}\right)} d w
$$

Hint: Use Cauchy's integral formula for $f\left(z_{j}\right), j=1,2$
b) Assume that $|f(w)| \leq M$ for all $w \in \partial D_{r}$. Show that

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leq \frac{4 M}{r}\left|z_{1}-z_{2}\right|
$$

for all z_{1}, z_{2} in the disk $D_{r / 2}:=D(\alpha, r / 2)$.

Question 2

We consider the polynomial function $p(z)=z^{10}+(4+3 i) z^{8}-z^{2}+i$
a) Show that $|z|>\frac{1}{2}$ for any zero z of p.
b) Determine the number of zeros of p contained in the annulus $1<|z|<2$. (Zeros should be counted with multiplicities.)
c) Same question, but now for the annulus $2<|z|<3$.

Question 3

We consider the integral

$$
I=\int_{0}^{\infty} \frac{1}{1+x+x^{2}} \frac{d x}{\sqrt{x}}
$$

To compute it, we first calculate two residues. We denote by $s(z)$ the holomorphic function on $\mathbb{C} \backslash[0, \infty[$ (i.e., \mathbb{C} minus the positive real axis) determined by

$$
s(z)^{2}=z, \quad \text { and } \quad s(-1)=i
$$

a) Give an expression for $s(z)$ in terms of a suitable logarithmic function.
b) Let α be the unique root of the polynomial $1+z+z^{2}$ with $\operatorname{Im} \alpha>0$ Determine the residue of the function

$$
\frac{1}{1+z+z^{2}} \frac{1}{s(z)}
$$

in α. In addition, determine the residue of this function in the conjugate point $\bar{\alpha}$.
c) Calculate the integral I. Hint: use the following closed curve:

Question 4

Give an invertible complex 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

we denote by $F_{A}: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ the fractional linear transformation given by

$$
F_{A}(z)=\frac{a z+b}{c z+d}
$$

a) Determine a matrix M such that the associated fractional linear transformation F_{M} maps the points $1, i,-1$ onto $0,1, \infty$, respectively.
b) Prove that F_{M} maps the unit circle $|z|=1$ onto $\hat{\mathbb{R}}=\mathbb{R} \cup \infty$.
c) Prove that F_{M} maps the unit disk $D=\{z \in \mathbb{C}| | z \mid<1\}$ bijectively onto the upper half plane $\mathcal{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$.
d) Let F be any fractional linear transformation mapping D onto \mathcal{H}. Show that for every point $z \in D$ we have $F(1 / \bar{z})=\bar{z}$. Hint: show first that $z \mapsto \overline{F(1 / \bar{z})}$ is analytic, and that the identity holds for $z \in \partial D$. If you fail to see the argument, show at least that identity is valid for $F=F_{M}$.

