
Complex analysis – Exam

Notes:

1. Write your name and student number **clearly** on each page of written solutions you
hand in.

2. You can give solutions in English or Dutch.

3. You are expected to explain your answers.

4. You are allowed to consult text books, the lecture’s slides and your own notes.

5. You are not allowed to consult colleagues, calculators, or use the internet to assist you solve exam
questions.

6. Advice: read all questions first, then start solving the ones you already know how to solve or have
good idea on the steps to find a solution. After you have finished the ones you found easier, tackle
the harder ones.

Questions

Exercise 1 (1.0 pt). For a real number x, we know that sin2 x+ cos2 x = 1. If we extend sin and cos to
the complex plane using their respective power series expansions, does it still hold that sin2 z+ cos2 z = 1
for all complex numbers?

Proof 1. Both sin and cos are, by the command of the question, analytic functions. One readily sees
that lim |an|1/n = 0 for both of these series, so they have infinite radius of convergence (you did not
have to argues this though, everybody knows these series have infinite radius of convergence). Therefore
sin1 z + cos2 z is an analytic function on C and so is 1. These two analytic functions agree on a set
with accumulation point, namely, the real line, hence they agree in the the whole complex plane and the
identity sin2 z + cos2 z = 1 holds for all complex numbers

Proof 2. From the powe series expansion for sin and cos we see that

sin z =
eiz − e−iz

2i
cos z =

eiz + e−iz

2
.

Therefore

sin2 z + cos2 z = −e
2iz − 2 + e−2iz

4
+
e2iz + 2 + e−2iz

4

=
4

4
= 1

Exercise 2 (1.0 pt). Let f, g : C→ C be holomorphic functions such that |f(z)| ≤ |g(z)| for all z. Show
that there is a complex number λ such that f = λg.



Proof. If g is identically 0, then so is f and we can take λ = 1.
If g is not identically 0, then h := f/g is a holomorphic function with singularities at the zeros of g.

Since |f | ≤ |g|, we have that |h| ≤ 1 and in particular h is bounded in a neighbouhoord or each of its
singularities. So all singularities of h are removable and we can extend h to an entire function.

Since h is an entire function which satisfies |h| ≤ 1, (it is therefore bounded) by Liouville’s theorem h
is constant, say h ≡ λ. Therefore f = λg.

Exercise 3. Let f : C→ C be a function which is bounded by log |z| for |z| large, that is, there is C > 1
such that if |z| > C, then |f(z)| ≤ log |z|.

1. (1.0 pt) Show that if f is holomorphic, then f is constant.

2. (1.0 pt) If f is harmonic, does it have to be constant?

Proof. • Consider g = ef . Then for z large enough

|g| = |ef | ≤ e|f | ≤ elog |z| = |z|,

showing that g is a nowhere vanishing holomorphic function (it is an exponential of something)
bounded by |z|. From a hand-in exercise which is also a result in the book, g is a polynomial of
degree at most 1, say g(z) = az + b, which never vanishes, hence g is constant and so is f .

• For this part we can deal with the real and imaginary parts of f separately, since if we can show
that they are both constant, then so is f . So from now we assume that f takes real values. In this
case, since C is simply-connected, there is a holomorphic function f̃ whose real part is f and we can

consider as before the function g = ef̃ . Then

|g| = |ef̃ | = |ef | =≤ e|f | ≤ elog |z| = |z|,

showing one again that g is a linear polynomial without roots, and hence constant. Therefore f is
also constant.

Side note: log |z| is not a counter example to the second question because it is not defined on the whole
plane. For the same reason f(z) = 1/z is not a counter example for the question.

Exercise 4. Let f : C→ C be the holomorphic function with singularities given by

f(z) =
eiz

z4 + 1
.

1. (0.7 pt) Determine the singularities of f and for each of them, determine what type of singularity it
is (removable, pole or essential).

2. (0.7 pt) Express the residue of f at each of its singularities in terms of the 8th root of 1, ω = e
2πi
8 .

3. (0.6 pt) Relate the integral ∫ ∞
−∞

cosx

x4 + 1
dx

to the residues of f .

Proof. This is very similar to a question in the mock exam and I will not repeat its solution here.

Exercise 5 (1.5 pt). Let f : C→ C be given by

f(z) =
z4

1 + z + 2z2 · · ·+ 1000z1000
.

Compute the sum of all residues of f .



Proof. The function f is a quotient of two polynomials, hence it is meromorphic and has finitely many
poles (at most 1000). By Cauchy’s integral formula we can compute the sum of the residues of f by
integrating it along any large circle which contains all poles of f inside it. So we have

|2πi
∑
z

Reszf | =
∣∣∣∣∫

∂BR

z4

1 + z + 2z2 · · ·+ 1000z1000
dz

∣∣∣∣
=

∫
∂BR

∣∣∣∣ z4

1 + z + 2z2 · · ·+ 1000z1000

∣∣∣∣ |dz|
≤ C

∫
∂BR

R4

R1000
|dz|

≤ C2πR
1

R996

≤ C2π
1

R995

R→∞−→ 0.

Therefore
∑

z Reszf = 0.

Exercise 6 (1.5 pt). Let a be a real number bigger that 1. Show that the equation

ez − znea = 0

has n solutions inside the unit disc (counted with multiplicity).

Proof. We will use Rouché’s theorem. Take f(z) = −znea and g(z) = ez − znea, then for z in the unit
circle,

|f(z)− g(z)| = | − znea − ez + znea| = |ez| ≤ e < ea = |f(z)|,
hence g and f have the same number of zeros inside the unit disc (counted with multiplicity). It is clear
that f has a zero of order n at the origin, so g also has n zeros inside the disc.

Exercise 7.

1. (0.5) Show that the first quadrant

R = {(x+ iy) ∈ C : x > 0, and y > 0}

is isomorphic to the upper half plane

H = {(x+ iy) ∈ C : y > 0}.

2. (0.5) Determine all the automorphisms of R.

Proof. • The function f : R → H, f(z) = z2 is a biholomorphism between R and H whose inverse is
given by

g(z) = e
1
2 log z =:

√
z,

where we use the principal branch of the log above (and you should argue that these are indeed
inverses of each other)

• Since the automorphisms of H are the fractional linear transformations of the form

ϕ(z) =
az + b

cz + d
with a, b, c, d ∈ R, ad− bc > 0,

we have that the automorphisms of R are of the form f−1 ◦ ϕ ◦ f , which explicitly becomes

z 7→
√
az2 + b

cz2 + d
with a, b, c, d ∈ R, ad− bc > 0.


