RETAKE COMPLEX FUNCTIONS

JULY 18, 2017, 9:00-12:00

- Put your name and student number on every sheet you hand in.
- When you use a theorem, show that the conditions are met.
- Include your partial solutions, even if you were unable to complete an exercise.

Notation: For $a \in \mathbb{C}$ and $r>0$, we write $D(a, r)=\{z \in \mathbb{C}:|z-a|<r\}$, and $\bar{D}(a, r)$ and $C(a, r)$ are the closure and boundary respectively of $D(a, r)$.
Exercise 1 (15 pt):
(a) Determine the image $f(\mathbb{C})$ of the exponential function $f(z)=e^{z}$.

A theorem of Picard states that for a non-constant entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ the following holds: the complement in \mathbb{C} of the image $f(\mathbb{C})$ is either empty or consists of exactly one point. You may use this result in the rest of this exercise.
(b) Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be an injective entire function. Prove that g is surjective. Hint: Consider the function $z \mapsto g\left(e^{z}\right)$. Alternatively, consider the function $z \mapsto g(g(z))$.
(c) Explain carefully why g is necessarily an analytic automorphism of \mathbb{C}.

Exercise $2(15 p t)$:

Let $U=D(0, r) \backslash\{0\}$ be a punctured open disc and let $f: U \rightarrow \mathbb{C}$ be an analytic function that is injective.
(a) Assume that the isolated singularity of f at 0 is removable. Let $g: D(0, r) \rightarrow \mathbb{C}$ be the analytic extension of f to $D(0, r)$. Show that the order of g at 0 is either 0 or 1 .
(b) Assume instead that f has a pole at 0 . Show that this is necessarily a simple pole.
(c) Prove that f cannot have an essential singularity at 0 . (In other words, either (a) or (b) must occur.)

Exercise 3 (15 pt):

Prove that the following integral converges and evaluate it.

$$
\int_{0}^{\infty} \frac{(\log x)^{2}}{x^{4}+1} d x
$$

(Hint: Use a contour consisting of two circular arcs and two segments. Use an appropriate definition of the complex logarithm.)

Exercise $4(15 p t)$:

Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be a power series with radius of convergence r, with $0<r \leq \infty$. For $m \in \mathbb{Z}_{\geq 0}$, let p_{m} be the polynomial

$$
p_{m}(z)=\sum_{n=0}^{m} a_{n} z^{n}
$$

Let w be a zero of f with $|w|<r$. Prove that for all $\varepsilon>0$, there exists $N \in \mathbb{Z}_{\geq 0}$ such that for all $m \geq N$, the function p_{m} has a zero in $D(w, \varepsilon)$.

Exercise 5 (15 pt): Let

$$
f(z)=\frac{\left(z^{4}-1\right)^{2} \sin ^{2} z}{\cos 2 \pi z-1}
$$

and let $U \subset \mathbb{C}$ be the domain of f. Let $V \subset \mathbb{C}$ be the maximal open set on which a holomorphic function g can be defined that agrees with f on U. Determine the radius of convergence of the power series for $g(z)$ at each of the following points:

$$
z=i, \quad z=1+i, \quad z=2+i, \quad z=3+i
$$

Exercise 6 (15 pt):

In this exercise, you may freely use the fact from real analysis that for all $a \in \mathbb{R}_{>1}$, we have

$$
\begin{equation*}
\int_{1}^{\infty} x^{-a} d x<\sum_{n=1}^{\infty} n^{-a}<1+\int_{1}^{\infty} x^{-a} d x \tag{1}
\end{equation*}
$$

(which you can easily see by considering upper and lower Riemann sums of the integral).
(a) Show that the series

$$
\zeta(z)=\sum_{n=1}^{\infty} n^{-z}
$$

(with $n^{-z}:=e^{-z \log n}$) defines a holomorphic function on $U:=\{z \in \mathbb{C}: \operatorname{Re}(z)>1\}$.
One can show that ζ has an analytic continuation to $\mathbb{C} \backslash\{1\}$. This function $\zeta: \mathbb{C} \backslash\{1\} \rightarrow \mathbb{C}$ is meromorphic; it is called the Riemann zeta-function. You may use this in the rest of this exercise.
(b) Show that ζ has a simple pole in 1 , with residue 1.

