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SOLUTIONS ENDTERM COMPLEX FUNCTIONS
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Notation: For a ∈ C and r > 0, we write D(a, r) = {z ∈ C : |z − a| < r}, and D(a, r)
and C(a, r) are the closure and boundary respectively of D(a, r).

Exercise 1 (10 pt):
Evaluate the following integral (which clearly is convergent).∫ ∞

0

1
(x2 + 4)(x2 + 9)

dx.

Solution. Note that the integrand is even. We integrate f(z) = 1/((z2+4)(z2+9)) over
a contour consisting of the segment from −R to R and the counterclockwise semicircle
S(R) around 0 from R to −R, for R > 3 large enough. Note that |(z2+4)(z2+9)| ≥ (R2−
4)(R2−9) when |z| = R, so |

∫
S(R) f(z)dz| ≤ πR/((R2−4)(R2−9)), so

∫
S(R) f(z)dz → 0

as R →∞. Next, the poles of f are at the points z = ±2i and z = ±3i; the poles in the
upper half plane are at 2i and 3i, inside the contour. The residues are easily computed:

Res2i(f) =
1

4i(−4 + 9)
=

1
20i

and Res3i(f) =
1

6i(−9 + 4)
= − 1

30i
.

It follows that
∫∞
−∞ f(z) dz = 2πi

60i , so
∫∞
0 f(z) dz = π

60 .

Exercise 2 (15 pt):

Fix R > 0 and a ∈ C; we write D := D(a,R) and D := D(a,R) and C := C(a,R). Let
f, g : D → C be continuous functions, analytic on D, such that |f(z)| = |g(z)| for all
z ∈ C, and such that f and g have no zeros in D. Show that f = αg for some α ∈ C
with |α| = 1.

Solution. Because f and g have no zeros, we have continuous functions h1 := f/g and
h2 := g/f on D, analytic on D, such that |h1(z)| = |h2(z)| = 1 for all z ∈ C. If h1

is not constant, then h2 is not constant, and the maximum modulus principle (in the
version of Corollary III.1.4) tells us that |h1(z)| < 1 and |h2(z)| < 1 for all z ∈ D, so
|f(z)| < |g(z)| and |g(z)| < |f(z)|, a contradiction. Hence, f/g = α for some α ∈ C, and
taking z ∈ D, we find |α| = |f(z)/g(z)| = 1.

Exercise 3 (15 pt):

Let a, b ∈ C. Consider the polynomial p(z) = z7 + az4 + bz2 − 2.



(a) Show that if |z| ≤ 1/
√

2, then

|p(z)| ≥ 32−
√

2− 4|a| − 8|b|
16

.

(b) Suppose that
|b|+ 3 < |a| ≤ 15

2 − 2|b|. (1)

Show that, counting zeros with their multiplicities, p has

(i) no zeros in the disk |z| ≤ 1/
√

2,

(ii) four zeros in the annulus 1/
√

2 < |z| < 1,

(iii) three zeros in the annulus 1 < |z| < 2,

(iv) and no zeros in the annulus 2 ≤ |z|.

Solution (a) For |z| ≤ 1/
√

2 we have, by the (reverse) triangle inequality,

|p(z)| ≥ 2− |z7 + az4 + bz2|
≥ 2− |z|7 − |a||z|4 − |b||z|2

≥ 2−
√

2
16

− |a|
4
− |b|

2
=

32−
√

2− 4|a| − 8|b|
16

.

(b) By the second inequality in (1), we have

4|a|+ 8|b| ≤ 30, (2)

hence by (a), for |z| ≤ 1/
√

2 we have |p(z)| ≥ (2 −
√

2)/16 > 0, which proves (i). For
|z| = 1, we have

|p(z)− az4| ≤ |z|7 + |b||z|2 + 2 = |b|+ 3 < |a| = |az4|,

where in the last inequality we used (1). Hence, by Rouché’s Theorem, p has 4 zeros in
D(0, 1), because az4 has 4 zeros in that disk. Combining this with (i) yields (ii). Note
also that p has no zeros on the circle |z| = 1 (we would get |az4| < |az4| in the above
calculation). For |z| = 2, we have, using (2),

|p(z)− z7| ≤ |a||z|4 + |b||z|2 + 2
= 16|a|+ 4|b|+ 2
≤ 4(4|a|+ 8|b|) + 2

≤ 4 · 30 + 2 < 128 = |z7|.

Hence, by Rouché’s Theorem, p has 7 zeros in D(0, 2), because z7 has 7 zeros in that
disk. Combining this with what we found before, namely that p has exactly four zeros
in D(0, 1), yields (iii). Because the number of zeros of a polynomial is at most (even



exactly) its degree, there are no other zeros than the seven found in (ii) and (iii), proving
(iv).

Exercise 4 (15 pt): Let

f(z) =
z2(z − 1)ez

sin2 πz

and let U ⊂ C be the domain of f . Let V ⊂ C be the maximal open set on which
a holomorphic function g can be defined that agrees with f on U . For each v ∈ V ,
determine the radius of convergence of the power series for g at v.

Solution. The numerator and denominator of f are entire functions, so U equals the
complement of the zero set of sin πz. It’s easy to show that sin z has no zeros in the
upper and lower half planes, so U = C−Z. For each k ∈ Z, the denominator of f has a
double zero. If the numerator has at least a double zero at an integer k, V is larger than
U , since the isolated singularity of f at k is then removable. Since ez never vanishes, this
happens only at k = 0, so V = U ∪ {0}. From the remark on p. 129 of Lang’s book, we
see that the radius of convergence of the power series for g at a point v of V is equal to
the distance from v to the complement Z−{0} of V . Write v = a+ bi with a, b ∈ R; the
answer for a + bi clearly equals the answer for −a + bi, so it suffices to give the answer
for a ≥ 0. When 0 ≤ a ≤ 3

2 , the distance equals
√

(a− 1)2 + b2; when n− 1
2 ≤ a ≤ n+ 1

2

for n ∈ Z and n ≥ 2, the distance equals
√

(a− n)2 + b2.

Exercise 5 (15 pt):
Let f be a non-constant entire function. Prove that the closure of f(C) equals C.

Solution. Suppose that the closure X of f(C) doesn’t equal C; let α be an element of
Y = C−X. Since Y is open, there exists ε > 0 so that D(α, ε) ⊂ Y . Then |f(z)−α| ≥ ε
for all z ∈ C. Write g(z) = 1/(f(z) − α). Then g is entire. Also, |g(z)| ≤ 1/ε for all
z ∈ C, so g is bounded. By Liouville’s theorem, g is constant. Then f is constant as
well; contradiction. So X = C.

Exercise 6 (20 pt):
Prove that the following integral converges and evaluate it.∫ ∞

0

log x

x3 + 1
dx.

(Hint: Use a contour consisting of two circular arcs and two segments, with ‘vertices’ ε,
R, Rc, and εc, where c3 = 1, c 6= 1. Use the natural substitution to relate the integrals
over the two segments. Use an appropriate definition of the complex logarithm.)



Solution. Near zero, the integrand is bounded in absolute value by − log x and∫ 1

0
− log x dx = (x− x log x)

∣∣∣∣1
0

= 1,

since limx→0 x log x = 0, so the integral converges near zero. Convergence near infinity
follows from an estimate like |(log x)/(x3+1)| < 1/x2 for x > 1. Let c be the third root of
unity in the upper half plane (so c = −1

2 + 1
2 i
√

3). Following the hint, we take a contour
consisting of the counterclockwise circular arc A(R) around 0 from R to Rc, for R > 1
large enough, the clockwise circular arc−A(ε) around 0 from εc to ε, for 0 < ε < 1/2 small
enough, and the segments from Rc to εc and from ε to R. Let f(z) = (log z)/(z3 + 1),
where we take the (branch of the) complex logarithm on C\R≤0 that continues log x for
x > 0, i.e., for z = r exp(iφ) with r > 0 and −π < φ < π we have log z = log r+iφ. Then∫ εc
Rc f(y) dy = [y = cx, dy = cdx, log y = log x+2πi/3] = c

∫ ε
R(log x+2πi/3)/(x3 +1) dx.

Now ∫
A(R)

f(z) dz =
∫ 2π/3

0

log R + iφ

R3 exp(3iφ) + 1
iR exp(iφ) dφ,

so ∣∣ ∫
A(R)

f(z) dz
∣∣ ≤ 2πR

3
log R + 2π/3

R3 − 1
,

which goes to 0 when R →∞. Similarly,∫
A(ε)

f(z) dz =
∫ 2π/3

0

log ε + iφ

ε3 exp(3iφ) + 1
iε exp(iφ) dφ,

so ∣∣ ∫
A(ε)

f(z) dz
∣∣ ≤ 2πε

3
8
7
(| log ε|+ 2π/3),

which again goes to 0 as ε → 0.
The integrand has simple poles at the three zeroes of z3 + 1. Put α = exp(iπ/3),
then the only pole in the upper half plane is at α, inside the contour. Now Resα(f) =
(log α) limz→α

z−α
z3+1

= iπ
3

1
3α2 = iπ

9c = iπc2

9 .

So we find that (1− c)
∫∞
0 f(x) dx− 2πic/3

∫∞
0 1/(x3 + 1) dx = 2πi iπc2

9 .
Hence, we need to compute

∫∞
0 1/(x3 + 1) dx (which clearly converges). We take the

same contour (in fact, ε = 0 suffices now). We find (1− c)
∫∞
0 1/(x3 +1) dx = 2πi

3α2 = 2πi
3c ,

so
∫∞
0 1/(x3 + 1) dx = 2πi

3c(1−c) = 2πi
3i
√

3
= 2π

√
3

9 .

Finally,
∫∞
0 f(x) dx = − 2π2c2

9(1−c) + 2πic
3(1−c)

2π
√

3
9 = 2π2

27(1−c)(−3c2 + 2ic
√

3) = 2π2

27

− 3
2
+ 1

2
i
√

3
3
2
− 1

2
i
√

3
=

−2π2

27 .


