Instructor: Carel Faber Assistants: Lars van den Berg and Tommaso Pavolini

SOLUTIONS ENDTERM COMPLEX FUNCTIONS

JUNE 27, 2017, 9:00-12:00

Notation: For $a \in \mathbb{C}$ and r > 0, we write $D(a, r) = \{z \in \mathbb{C} : |z - a| < r\}$, and $\overline{D}(a, r)$ and C(a, r) are the closure and boundary respectively of D(a, r).

Exercise 1 $(10 \ pt)$:

Evaluate the following integral (which clearly is convergent).

$$\int_0^\infty \frac{1}{(x^2+4)(x^2+9)} \, dx.$$

Solution. Note that the integrand is even. We integrate $f(z) = 1/((z^2+4)(z^2+9))$ over a contour consisting of the segment from -R to R and the counterclockwise semicircle S(R) around 0 from R to -R, for R > 3 large enough. Note that $|(z^2+4)(z^2+9)| \ge (R^2-4)(R^2-9)$ when |z| = R, so $|\int_{S(R)} f(z)dz| \le \pi R/((R^2-4)(R^2-9))$, so $\int_{S(R)} f(z)dz \to 0$ as $R \to \infty$. Next, the poles of f are at the points $z = \pm 2i$ and $z = \pm 3i$; the poles in the upper half plane are at 2i and 3i, inside the contour. The residues are easily computed:

$$\operatorname{Res}_{2i}(f) = \frac{1}{4i(-4+9)} = \frac{1}{20i}$$
 and $\operatorname{Res}_{3i}(f) = \frac{1}{6i(-9+4)} = -\frac{1}{30i}.$

It follows that $\int_{-\infty}^{\infty} f(z) dz = \frac{2\pi i}{60i}$, so $\int_{0}^{\infty} f(z) dz = \frac{\pi}{60i}$.

Exercise 2 (15 pt):

Fix R > 0 and $a \in \mathbb{C}$; we write D := D(a, R) and $\overline{D} := \overline{D}(a, R)$ and C := C(a, R). Let $f, g : \overline{D} \to \mathbb{C}$ be continuous functions, analytic on D, such that |f(z)| = |g(z)| for all $z \in C$, and such that f and g have no zeros in \overline{D} . Show that $f = \alpha g$ for some $\alpha \in \mathbb{C}$ with $|\alpha| = 1$.

Solution. Because f and g have no zeros, we have continuous functions $h_1 := f/g$ and $h_2 := g/f$ on \overline{D} , analytic on D, such that $|h_1(z)| = |h_2(z)| = 1$ for all $z \in C$. If h_1 is not constant, then h_2 is not constant, and the maximum modulus principle (in the version of Corollary III.1.4) tells us that $|h_1(z)| < 1$ and $|h_2(z)| < 1$ for all $z \in D$, so |f(z)| < |g(z)| and |g(z)| < |f(z)|, a contradiction. Hence, $f/g = \alpha$ for some $\alpha \in \mathbb{C}$, and taking $z \in \overline{D}$, we find $|\alpha| = |f(z)/g(z)| = 1$.

Exercise 3 (15 pt):

Let $a, b \in \mathbb{C}$. Consider the polynomial $p(z) = z^7 + az^4 + bz^2 - 2$.

(a) Show that if $|z| \leq 1/\sqrt{2}$, then

$$|p(z)| \geq \frac{32 - \sqrt{2} - 4|a| - 8|b|}{16}$$

(b) Suppose that

$$|b| + 3 < |a| \le \frac{15}{2} - 2|b|.$$
(1)

Show that, counting zeros with their multiplicities, p has

- (i) no zeros in the disk $|z| \leq 1/\sqrt{2}$,
- (ii) four zeros in the annulus $1/\sqrt{2} < |z| < 1$,
- (iii) three zeros in the annulus 1 < |z| < 2,
- (iv) and no zeros in the annulus $2 \leq |z|$.

Solution (a) For $|z| \leq 1/\sqrt{2}$ we have, by the (reverse) triangle inequality,

$$\begin{aligned} |p(z)| &\geq 2 - |z^7 + az^4 + bz^2| \\ &\geq 2 - |z|^7 - |a||z|^4 - |b||z|^2 \\ &\geq 2 - \frac{\sqrt{2}}{16} - \frac{|a|}{4} - \frac{|b|}{2} = \frac{32 - \sqrt{2} - 4|a| - 8|b|}{16} \end{aligned}$$

(b) By the second inequality in (1), we have

$$4|a| + 8|b| \le 30,\tag{2}$$

hence by (a), for $|z| \le 1/\sqrt{2}$ we have $|p(z)| \ge (2-\sqrt{2})/16 > 0$, which proves (i). For |z| = 1, we have

$$|p(z) - az^4| \le |z|^7 + |b||z|^2 + 2 = |b| + 3 < |a| = |az^4|,$$

where in the last inequality we used (1). Hence, by Rouché's Theorem, p has 4 zeros in D(0,1), because az^4 has 4 zeros in that disk. Combining this with (i) yields (ii). Note also that p has no zeros on the circle |z| = 1 (we would get $|az^4| < |az^4|$ in the above calculation). For |z| = 2, we have, using (2),

$$|p(z) - z^{7}| \leq |a||z|^{4} + |b||z|^{2} + 2$$

= 16|a| + 4|b| + 2
$$\leq 4(4|a| + 8|b|) + 2$$

$$\leq 4 \cdot 30 + 2 < 128 = |z^{7}|.$$

Hence, by Rouché's Theorem, p has 7 zeros in D(0,2), because z^7 has 7 zeros in that disk. Combining this with what we found before, namely that p has exactly four zeros in $\overline{D}(0,1)$, yields (iii). Because the number of zeros of a polynomial is at most (even

exactly) its degree, there are no other zeros than the seven found in (ii) and (iii), proving (iv).

Exercise 4 (15 pt): Let

$$f(z) = \frac{z^2(z-1)e^z}{\sin^2 \pi z}$$

and let $U \subset \mathbb{C}$ be the domain of f. Let $V \subset \mathbb{C}$ be the maximal open set on which a holomorphic function g can be defined that agrees with f on U. For each $v \in V$, determine the radius of convergence of the power series for g at v.

Solution. The numerator and denominator of f are entire functions, so U equals the complement of the zero set of $\sin \pi z$. It's easy to show that $\sin z$ has no zeros in the upper and lower half planes, so $U = \mathbb{C} - \mathbb{Z}$. For each $k \in \mathbb{Z}$, the denominator of f has a double zero. If the numerator has at least a double zero at an integer k, V is larger than U, since the isolated singularity of f at k is then removable. Since e^z never vanishes, this happens only at k = 0, so $V = U \cup \{0\}$. From the remark on p. 129 of Lang's book, we see that the radius of convergence of the power series for g at a point v of V is equal to the distance from v to the complement $\mathbb{Z} - \{0\}$ of V. Write v = a + bi with $a, b \in \mathbb{R}$; the answer for a + bi clearly equals the answer for -a + bi, so it suffices to give the answer for $a \ge 0$. When $0 \le a \le \frac{3}{2}$, the distance equals $\sqrt{(a-1)^2 + b^2}$; when $n - \frac{1}{2} \le a \le n + \frac{1}{2}$ for $n \in \mathbb{Z}$ and $n \ge 2$, the distance equals $\sqrt{(a-n)^2 + b^2}$.

Exercise 5 (15 pt):

Let f be a non-constant entire function. Prove that the closure of $f(\mathbb{C})$ equals \mathbb{C} .

Solution. Suppose that the closure X of $f(\mathbb{C})$ doesn't equal \mathbb{C} ; let α be an element of $Y = \mathbb{C} - X$. Since Y is open, there exists $\epsilon > 0$ so that $D(\alpha, \epsilon) \subset Y$. Then $|f(z) - \alpha| \ge \epsilon$ for all $z \in \mathbb{C}$. Write $g(z) = 1/(f(z) - \alpha)$. Then g is entire. Also, $|g(z)| \le 1/\epsilon$ for all $z \in \mathbb{C}$, so g is bounded. By Liouville's theorem, g is constant. Then f is constant as well; contradiction. So $X = \mathbb{C}$.

Exercise 6 (20 pt):

Prove that the following integral converges and evaluate it.

$$\int_0^\infty \frac{\log x}{x^3 + 1} \, dx.$$

(*Hint:* Use a contour consisting of two circular arcs and two segments, with 'vertices' ϵ , R, Rc, and ϵc , where $c^3 = 1$, $c \neq 1$. Use the natural substitution to relate the integrals over the two segments. Use an appropriate definition of the complex logarithm.)

Solution. Near zero, the integrand is bounded in absolute value by $-\log x$ and

$$\int_0^1 -\log x \, dx = (x - x \log x) \Big|_0^1 = 1,$$

since $\lim_{x\to 0} x \log x = 0$, so the integral converges near zero. Convergence near infinity follows from an estimate like $|(\log x)/(x^3+1)| < 1/x^2$ for x > 1. Let c be the third root of unity in the upper half plane (so $c = -\frac{1}{2} + \frac{1}{2}i\sqrt{3}$). Following the hint, we take a contour consisting of the counterclockwise circular arc A(R) around 0 from R to Rc, for R > 1large enough, the clockwise circular arc $-A(\epsilon)$ around 0 from ϵc to ϵ , for $0 < \epsilon < 1/2$ small enough, and the segments from Rc to ϵc and from ϵ to R. Let $f(z) = (\log z)/(z^3 + 1)$, where we take the (branch of the) complex logarithm on $\mathbb{C} \setminus \mathbb{R}_{\leq 0}$ that continues $\log x$ for x > 0, i.e., for $z = r \exp(i\phi)$ with r > 0 and $-\pi < \phi < \pi$ we have $\log z = \log r + i\phi$. Then $\int_{Rc}^{cc} f(y) \, dy = [y = cx, \, dy = cdx, \, \log y = \log x + 2\pi i/3] = c \int_{R}^{\epsilon} (\log x + 2\pi i/3)/(x^3 + 1) \, dx$. Now

$$\int_{A(R)} f(z) \, dz = \int_0^{2\pi/3} \frac{\log R + i\phi}{R^3 \exp(3i\phi) + 1} iR \exp(i\phi) \, d\phi,$$

 \mathbf{SO}

$$\left| \int_{A(R)} f(z) \, dz \right| \le \frac{2\pi R}{3} \frac{\log R + 2\pi/3}{R^3 - 1}$$

which goes to 0 when $R \to \infty$. Similarly,

$$\int_{A(\epsilon)} f(z) dz = \int_0^{2\pi/3} \frac{\log \epsilon + i\phi}{\epsilon^3 \exp(3i\phi) + 1} i\epsilon \exp(i\phi) d\phi$$

 \mathbf{SO}

$$\left|\int_{A(\epsilon)} f(z) \, dz\right| \le \frac{2\pi\epsilon}{3} \frac{8}{7} (\left|\log\epsilon\right| + 2\pi/3),$$

which again goes to 0 as $\epsilon \to 0$.

The integrand has simple poles at the three zeroes of $z^3 + 1$. Put $\alpha = \exp(i\pi/3)$, then the only pole in the upper half plane is at α , inside the contour. Now $\operatorname{Res}_{\alpha}(f) =$

(log α) $\lim_{z \to \alpha} \frac{z - \alpha}{z^3 + 1} = \frac{i\pi}{3} \frac{1}{3\alpha^2} = \frac{i\pi c^2}{9}$. So we find that $(1 - c) \int_0^\infty f(x) \, dx - 2\pi i c/3 \int_0^\infty 1/(x^3 + 1) \, dx = 2\pi i \frac{i\pi c^2}{9}$. Hence, we need to compute $\int_0^\infty 1/(x^3 + 1) \, dx$ (which clearly converges). We take the same contour (in fact, $\epsilon = 0$ suffices now). We find $(1 - c) \int_0^\infty 1/(x^3 + 1) \, dx = \frac{2\pi i}{3\alpha^2} = \frac{2\pi i}{3c}$, so $\int_0^\infty 1/(x^3+1) dx = \frac{2\pi i}{3c(1-c)} = \frac{2\pi i}{3i\sqrt{3}} = \frac{2\pi\sqrt{3}}{9}$. Finally, $\int_0^\infty f(x) dx = -\frac{2\pi^2 c^2}{9(1-c)} + \frac{2\pi i c}{3(1-c)} \frac{2\pi\sqrt{3}}{9} = \frac{2\pi^2}{27(1-c)} (-3c^2 + 2ic\sqrt{3}) = \frac{2\pi^2}{27} - \frac{\frac{3}{2} + \frac{1}{2}i\sqrt{3}}{\frac{3}{2} - \frac{1}{2}i\sqrt{3}} = \frac{2\pi^2}{3} + \frac$ $-\frac{2\pi^2}{27}$.