Instructor: Carel Faber Assistants: Stefan Franssen, Bjarne Kosmeijer, Roy Wang

SOLUTIONS RETAKE COMPLEX FUNCTIONS

JULY 21, 2016, 13:30-16:30

Exercise 1 (15 pt): Determine all entire functions f such that

$$(f(z))^2 - (f'(z))^2 = 1$$

for all $z \in \mathbb{C}$.

Solution. Taking the derivative, we find

$$0 = 2f(z)f'(z) - 2f'(z)f''(z) = 2f'(z)(f(z) - f''(z)).$$

If g(z)h(z) = 0 on an infinite compact set, then the zeroes of g or h form an infinite set with a point of accumulation. If g and h are moreover analytic, then $g \equiv 0$ or $h \equiv 0$. We conclude that $f' \equiv 0$ or $f - f'' \equiv 0$. In the first case, f is constant; hence $f \equiv 1$ or $f \equiv -1$. In the second case, we know (e.g., by Exercise 6 in §II.6) that there is a unique solution with given initial conditions. Of course $\exp(z)$ and $\exp(-z)$ are solutions, so $f(z) = a \exp(z) + b \exp(-z)$ is the unique solution with f(0) = a + b and f'(0) = a - b. Finally, $a \exp(z) + b \exp(-z)$ satisfies the original equation if and only if a and b are complex numbers with 4ab = 1. Answer: $f \equiv 1$ or $f \equiv -1$ or $f(z) = a \exp(z) + b \exp(-z)$, with 4ab = 1.

Exercise 2 (30 pt):

Prove that the following integrals converge and evaluate them.

a. (15 pt)
$$\int_0^\infty \frac{1}{(x^2+1)^3} dx$$
 b. (15 pt) $\int_0^\infty \frac{\log x}{x^4+1} dx$

(*Hint for (b): Use a contour consisting of two semicircles and two segments and use an appropriate definition of the complex logarithm.*)

Solution of part (a). The integrand is continuous on \mathbb{R} and convergence at infinity follows from $1/(x^2+1)^3 \leq 1/x^2$. Note that the integrand is even. We integrate $f(z) = 1/(z^2+1)^3$ over a contour consisting of the segment from -R to R and the counterclockwise semicircle S(R) around 0 from R to -R, for R > 1 large enough. Note that $|z^2+1| \geq R^2-1$ when |z| = R, so $|\int_{S(R)} f(z)dz| \leq \pi R/(R^2-1)^3$, so $\int_{S(R)} f(z)dz \to 0$ as $R \to \infty$. Next, the poles of f are at the points z with $z^2 = -1$, i.e., at $z = \pm i$; the only pole in the upper half plane is at i, inside the contour. Now, from the Taylor expansion at z = i,

$$\operatorname{Res}_{i}(f) = \operatorname{Res}_{i} \frac{1}{(z-i)^{3}(z+i)^{3}} = \frac{1}{2} \left(\frac{1}{(z+i)^{3}} \right)^{\prime \prime} \Big|_{z=i} = \frac{1}{2} \left(\frac{-3}{(z+i)^{4}} \right)^{\prime} \Big|_{z=i} = \frac{1}{2} \frac{12}{(z+i)^{5}} \Big|_{z=i} = \frac{6}{32i} = \frac{3}{16i}$$

It follows that $\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^3} dx = \frac{6\pi i}{16i} = \frac{3\pi}{8}$, so $\int_{0}^{\infty} \frac{1}{(x^2+1)^3} dx = \frac{3\pi}{16}$

Solution of part (b). Near zero, the integrand is bounded in absolute value by $-\log x$ and $\int_0^1 -\log x \, dx = (x - x \log x) \Big|_0^1 = 1$, since $\lim_{x \to 0} x \log x = 0$, so the integral converges near zero. Convergence near infinity follows from an estimate like $|(\log x)/(x^4+1)| < 1/x^3$ for x > 1. Following the hint, we take a contour consisting of the counterclockwise semicircle S(R) around 0 from R to -R, for R > 1 large enough, the clockwise semicircle $-S(\delta)$ around 0 from $-\delta$ to δ , for $0 < \delta < 1/2$ small enough, and the segments from -R to $-\delta$ and from δ to R. Let $f(z) = (\log z)/(z^4 + 1)$, where we take the (branch of the) complex logarithm on $\mathbb{C} \setminus i\mathbb{R}_{\leq 0}$ that continues $\log x$ for x > 0, i.e., for $z = r \exp(i\phi)$ with r > 0 and $-\pi/2 < \phi < 3\pi/2$ we have $\log z = \log r + i\phi$. Then $\int_{-R}^{-\delta} f(y) \, dy = [y = i\phi]$ $\begin{aligned} -x, \, dy &= -dx, \log y = \log x + i\pi] = \int_{\delta}^{R} (\log x + i\pi)/(x^4 + 1) \, dx. \\ \text{Now } \int_{S(R)} f(z) \, dz &= \int_{0}^{\pi} \frac{\log R + i\phi}{R^4 \exp(4i\phi) + 1} iR \exp(i\phi) \, d\phi, \text{ so } |\int_{S(R)} f(z) \, dz| \leq \pi R \frac{\log R + \pi}{R^4 - 1}, \text{ which} \\ \text{goes to } 0 \text{ when } R \to \infty. \quad \text{Similarly, } \int_{S(\delta)} f(z) \, dz &= \int_{0}^{\pi} \frac{\log \delta + i\phi}{\delta^4 \exp(4i\phi) + 1} i\delta \exp(i\phi) \, d\phi, \text{ so } |\int_{S(\delta)} f(z) \, dz| \leq \pi \delta \frac{16}{15} (|\log \delta| + \pi), \text{ which again goes to } 0 \text{ as } \delta \to 0. \end{aligned}$

The integrand has simple poles at the four zeroes of $z^4 + 1$. Put $\alpha = \exp(i\pi/4)$, then the poles in the upper half plane are at α and at α^3 . Now $\operatorname{Res}_{\alpha}(f) = (\log \alpha) \lim_{z \to \alpha} \frac{z - \alpha}{z^4 + 1} = i\pi/4 \frac{1}{4\alpha^3} = \frac{i\pi\alpha^5}{16} = \frac{-i\pi\alpha}{16}$ and $\operatorname{Res}_{\alpha^3}(f) = (\log(\alpha^3)) \lim_{z \to \alpha^3} \frac{z - \alpha^3}{z^4 + 1} = 3i\pi/4 \frac{1}{4\alpha^9} = \frac{3i\pi\alpha^7}{16} = \frac{-3i\pi\alpha^3}{16}$, so the sum of the residues equals $\frac{i\pi}{16}(-\alpha - 3\alpha^3) = \frac{i\pi}{16}(-(1+i)/\sqrt{2} - 3(-1+i)/\sqrt{2}) = \frac{i\pi}{16\sqrt{2}}(-1-i+3-3i) = \frac{i\pi}{16\sqrt{2}}(2-4i)$. The integral to be computed equals $1/2(2\pi i)\frac{i\pi}{16\sqrt{2}}2 = -\frac{\pi^2}{8\sqrt{2}} = -\frac{\pi^2\sqrt{2}}{16}$.

Along the way, we have also computed $\int_0^\infty \frac{i\pi}{x^{4+1}} dx = (2\pi i) \frac{i\pi}{16\sqrt{2}} (-4i) = i \frac{\pi^2}{2\sqrt{2}} = i \frac{\pi^2\sqrt{2}}{4}$, which also can be computed more directly, of course.

Exercise 3 (15 pt): Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function. Assume that f(1) = 2f(0). Given $\epsilon > 0$, prove that there exists $z \in \mathbb{C}$ with $|f(z)| < \epsilon$.

Solution. Let $\epsilon > 0$ be given and assume there is no $z \in \mathbb{C}$ with $|f(z)| < \epsilon$. Then f certainly doesn't have zeroes. It follows that f is not constant, for the only constant function f with f(1) = 2f(0) is the zero function. Also, g(z) = 1/f(z) is entire; and $|g(z)| \leq 1/\epsilon$ for all $z \in \mathbb{C}$, so g is bounded and entire, hence constant by Liouville's theorem; but then f is constant and we have reached a contradiction. Q.E.D.

Exercise 4 (15 pt): Consider the polynomial function $f(z) = z^3 + Az^2 + B$, where A and B are complex numbers. Assume that the following inequalities hold:

$$|A| + 1 < |B| < 4|A| - 8.$$

a. (10 pt) Determine the number of zeroes (counted with multiplicities) of f(z) with $|z| \leq 1$ and also the number of zeroes (with multiplicities) of f(z) with $|z| \leq 2$.

Solution. We apply Rouché's theorem. Note that |A| > 3, so |B| > 4. With g(z) = B, $f(z) - g(z) = z^3 + Az^2$, so when |z| = 1, $|f(z) - g(z)| \le |A| + 1 < |B| = |g(z)|$, so f(z) and g(z) have no zeroes when |z| = 1 and f(z) and g(z) have the same number of zeroes in $\{|z| < 1\}$, i.e., none, since $B \ne 0$. So f(z) has **no** zeroes with $|z| \le 1$.

Next, with $g(z) = Az^2 + B$, $f(z) - g(z) = z^3$, so when |z| = 2, $|f(z) - g(z)| = 8 < 4|A| - |B| \le |g(z)|$, so f(z) and g(z) have no zeroes when |z| = 2 and f(z) and g(z) have the same number of zeroes (with multiplicities) in $\{|z| < 2\}$, i.e., two, since |B| < 4|A| and |A| > 0, so |B/A| < 4, so $|\pm \sqrt{-B/A}| < 2$. So f(z) has **two** zeroes with $|z| \le 2$, counted with multiplicity.

b. (5 pt) By finding the zeroes of $z^3 - 3z^2 + 4$, show that these numbers of zeroes (with multiplicities) may be different when

$$|A| + 1 = |B| = 4|A| - 8.$$

Solution. Trying for rational solutions, we recall that these should be integers dividing 4; we see that -1 and 2 are zeroes. The sum of all three zeroes equals 3, so 2 is a double zero. So the number of zeroes with $|z| \leq 1$ equals **one** and the number of zeroes (with multiplicities) with $|z| \leq 2$ equals **three**. (Of course A = -3 and B = 4 satisfy the two equalities.)

Another way to find the solutions is to try for a double zero; it should satisfy $3z^2 = 6z$, which leads to z = 2.

Yet another way is to realize that the 'extra' zeroes should have absolute values 1, respectively 2. Since there is at least one real zero, one tries ± 1 and ± 2 and solves the remaining equation (of degree ≤ 2) if necessary.

Exercise 5 (15 pt): Let f be an entire function that sends both the real axis and the imaginary axis to the real axis.

- **a.** $(5 \ pt)$ Give an example of such a function for which in addition the following two properties hold:
 - (i) f is surjective;
 - (ii) $f(\mathbb{R}) \cap f(i\mathbb{R}) = \{f(0)\}.$

Solution. An example is $f(z) = z^2$. Then $f(\mathbb{R}) = \mathbb{R}_{\geq 0}$ and $f(i\mathbb{R}) = \mathbb{R}_{\leq 0}$. Also, $f(\sqrt{r}\exp(i\phi/2)) = r\exp(i\phi)$, so f is surjective. Another example is $f(z) = -10z^6$, etc.

b. (10 pt) Prove that no function satisfying the original hypotheses is injective. (I.e., you should prove: if f is entire and $f(\mathbb{R}) \subseteq \mathbb{R}$ and $f(i\mathbb{R}) \subseteq \mathbb{R}$, then f is not injective.)

Solution. Since $f(0) \in \mathbb{R}$, we can replace f by f - f(0), i.e., we may and will assume f(0) = 0. (Segments of) the real axis and the imaginary axis form examples of two curves through the origin with angle $\pi/2$. By Theorem I.7.1, we know that if $f'(0) \neq 0$, then the angle between $f(\mathbb{R})$ and $f(i\mathbb{R})$ at f(0) = 0 also equals $\pi/2$. But $f(\mathbb{R})$ and $f(i\mathbb{R})$ are both contained in \mathbb{R} , so the angle is not $\pi/2$, so f'(0) = 0. From Theorem II.6.4, it now follows that f is not injective on any open neighbourhood of the origin.

Bonus Exercise (15 pt): Assume that f is analytic in the punctured disc $\{z \in \mathbb{C} \mid 0 < |z| < R\}$ of radius R > 0 and that the isolated singularity of f at z = 0 is not removable. Prove that $g(z) = \exp(f(z))$ has an essential singularity at z = 0.

Hint: There are two cases: f has a pole at z = 0 or an essential singularity. When f has a pole, use a suitable local coordinate.

Solution. If f has a pole at z = 0 of order $m \ge 1$, then h = 1/f has a zero at z = 0 of order m. We then know that there exists a local analytic coordinate w in a neighbourhood of 0 such that $h(w) = w^m$. Then $f(w) = 1/w^m$ and $g(w) = \sum_{n=0}^{\infty} w^{-mn}/n!$. This is the Laurent expansion (in w) of g near 0; it has infinitely many negative terms, so g has an essential singularity at w = 0, i.e., at z = 0.

If f has an essential singularity at z = 0, then by the Casorati-Weierstrass theorem, f(U) is dense in \mathbb{C} for every open neighbourhood U of 0. Then g(U) is dense in $\exp(\mathbb{C}) = \mathbb{C} \setminus \{0\}$ (write it out), hence in \mathbb{C} , which is more than enough to conclude that g has an essential singularity at z = 0.