Docent: Yu.A. Kuznetsov
Assistants: L. Molag, W. Pranger

SOLUTIONS ENDTERM COMPLEX FUNCTIONS

JUNE 26 2013, 9:00-12:00

Exercise $1(10 p t)$ Give an analytic isomorphism between the first quadrant

$$
Q=\{z \in \mathbb{C}: \operatorname{Re}(z)>0 \text { and } \operatorname{Im}(z)>0\}
$$

and the open unit disc $D=\{z \in \mathbb{C}:|z|<1\}$.
We will construct the required analytic isomorphisn as a composition of two maps, g : $Q \rightarrow H$ and $f: H \rightarrow D$ where H denotes the upper halfplane.
Consider the function $g: Q \rightarrow H$ given by $g(z)=z^{2}$. Writing z in polar form, one indeed notices that g maps to H, since the argument is doubled by the mapping. We notice that an analytic inverse of g can be given by $z \mapsto \sqrt{\mid z} e^{\frac{1}{2} i \log z}$ (leave out the ray of non-negative real numbers). We conclude that g is an analytic isomorphism.
Let us look for a linear fractional transformation $f: H \rightarrow D$. Such a transformation can, for example, map $\{0, i, \infty\}$ onto $\{-1,0,1\}$ (in this order). This defines f uniquely, namely:

$$
f(z)=\frac{z-i}{z+i} .
$$

Let us prove that f indeed maps to D. Write $z=x+i y$, with $y>0$. Indeed, we have

$$
\left|\frac{z-i}{z+i}\right|^{2}=\frac{x^{2}+(y-1)^{2}}{x^{2}+(y+1)^{2}}<1 .
$$

We notice that for $w \in D$

$$
f^{-1}(w)=i \frac{1+w}{1-w}
$$

and can therefore conclude that f is an analytic isomorphism. Since the composition of analytic isomorphisms is again an analytic isomorphism we conclude that $f \circ g$ is an analytic isomorphism between Q and D.

Exercise 2 (25 $\boldsymbol{p t}$) Let $a, b>0$. Prove that the following integrals converge and evaluate them.
a. (10 pt) $\int_{-\infty}^{\infty} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x$

Convergence of $\int_{-\infty}^{\infty} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x$ means that
$\lim _{A \rightarrow-\infty} \int_{A}^{B} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x$ exists. Since $\frac{\cos (a x)-\cos (b x)}{x^{2}}$ is an even function: $B \rightarrow \infty$

$$
\begin{aligned}
\lim _{A \rightarrow-\infty} \int_{A \rightarrow \infty}^{B} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x & =\lim _{A \rightarrow \infty}\left[\int_{0}^{A} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x\right. \\
& \left.+\int_{0}^{B} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x\right] \\
& =2 \lim _{B \rightarrow \infty} \int_{0}^{B} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x \\
& =\lim _{B \rightarrow \infty} \int_{-B}^{B} \frac{\cos (a x)-\cos (b x)}{x^{2}} d x
\end{aligned}
$$

We'll show that the last limit exists. First, notice that $\cos (a x)-\cos (b x)=$ $\operatorname{Re}\left(e^{i a x}-e^{b x i}\right)$ and therefore it suffices to compute $\lim _{B \rightarrow \infty} \operatorname{Re}\left(\int_{-B}^{B} \frac{e^{i a x}-e^{b x i}}{x^{2}} d x\right)$. With l'Hôpital, or the fact that $\cos (a x)-\cos (b x)=x^{2}\left(a^{2}-b^{2}\right) / 2+O\left(x^{4}\right)$, we can see that $\frac{\cos (a x)-\cos (b x)}{x^{2}}$ has no (non-removable) singularity on \mathbb{R}, but $\frac{e^{i a x}-e^{b x i}}{x^{2}}$ does have a simple pole in zero! For this reason, we use the contour depicted in the image.

Of course, we take $\delta \downarrow 0$ and $R \rightarrow \infty$. The lemma on page 196 of Lang implies that $\lim _{\delta \downarrow 0} \int_{C_{\delta}} \frac{e^{i a x}-e^{b x i}}{x^{2}} d x=-\pi i \operatorname{Res}_{x=0}\left(\frac{e^{i a x}-e^{b x i}}{x^{2}}\right)=\pi(a-b)$, where the minus sign comes from the fact that our path is clockwise orientated. (Cauchy's theorem, which is used in the prove of the lemma, works for counter-clockwise orientated). Showing $\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{e^{i a x}-e^{b x i}}{x^{2}} d x=0$ is straight forward.
Notice that there are no poles inside our contour and therefore:

$$
\lim _{R \rightarrow \infty, \delta \downarrow 0}\left[\int_{C_{\delta}}+\int_{L_{1}}+\int_{C_{R}}+\int_{L_{2}}\right]=\int_{\mathbb{R}}+\pi(a-b)=0
$$

Clearly, our integral equals $\pi(b-a)$.

Remark. For the convergence of the integral one can also use that $(\cos (a x)-$ $\cos (b x)) / x^{2} \leq 2 / x^{2}$ and thus it converges by the comparison test.
b. (15 pt) $\int_{-\infty}^{\infty} e^{-a x^{2}} \cos (b x) d x$ (Hint: Use a rectangular countour.)

Convergence follows in the same way as above when we remember $\int_{\mathbb{R}} e^{-a x^{2}} d x=$ $\sqrt{\frac{\pi}{a}}$. As usual, we write $\cos (b x)=\operatorname{Re}\left(e^{i b x}\right)$ such that we get $\int_{\mathbb{R}} e^{-a x^{2}+i b x}$. The idea is to transform our integral to a gaussian integral as above and we will achieve this with a translation of a complex number $t: x \mapsto x+t$. We get

$$
-a x^{2}+i b x \mapsto-a(x+t)^{2}+i b(x+t)=-a x^{2}+(i b-2 a t) x+\left(-a t^{2}+i b t\right)
$$

Notice that taking $t=i \frac{b}{2 a}$ ensures that the linear term on the right vanishes, it equals $-a x^{2}+\left(-a t^{2}+i b t\right)$. For this reason, let the contour be the rectangle formed by $\left[-R, R, R+i \frac{b}{2 a},-R+i \frac{b}{2 a}\right]$, orientated counter-clockwise. Since $f(x)=e^{-a x^{2}+i b x}$ is an entire function, the integral will equal zero. It is easy to prove that the vertical path's will not contribute, i.e. $\lim _{R \rightarrow \infty} \int_{R}^{R+i \frac{b}{2 a}} f(x) d x=$ $\lim _{R \rightarrow \infty} \int_{-R+i \frac{b}{2 a}}^{-R} f(x) d x=0$. We end up with:

$$
\int_{-R}^{R} e^{-a x^{2}+i b x} d x=-\int_{R+i \frac{b}{2 a}}^{-R+i \frac{b}{2 a}} e^{-a x^{2}+i b x} d x=\int_{-R+i \frac{b}{2 a}}^{R+i \frac{b}{2 a}} e^{-a x^{2}+i b x} d x
$$

Notice that, because of the smart choice of $t=i \frac{b}{2 a}$, letting $R \rightarrow \infty$, the last integral is simply $\int_{-\infty}^{\infty} e^{-a x^{2}+\left(-a t^{2}+i b t\right)} d x=e^{-a t^{2}+i b t} \sqrt{\frac{\pi}{a}}$. Taking the real part, we can conclude $\int_{-\infty}^{\infty} e^{-a x^{2}} \cos (b x) d x=e^{b^{2} /(2 a)} \sqrt{\frac{\pi}{a}}$.

Remark. For the convergence of the integral one can also use that

$$
\left|e^{-a x^{2}} \cos (b x)\right| \leq e^{-a x^{2}}
$$

and thus it converges by the comparison test.

Exercise 3 (10 pt) Consider the polynomial function $P(z)=z^{7}-2 z-5$.
a. (7pt) Determine the number of roots of P with $\operatorname{Re}(z)>0$.

We consider the contour γ_{R} given by $(R>0)$:

$$
\begin{aligned}
& L_{R}(t)=i t \text { with } t \in[-R, R] \\
& C_{R}(t)=R e^{i t} \text { with } t \in[-\pi / 2, \pi / 2]
\end{aligned}
$$

We define $Q(z)=z^{7}-5$. In order to apply Rouché's theorem we will prove that $|P(z)-Q(z)|<|Q(z)|$ on γ_{R}. On C_{R} we can obviously pick R big enough to achieve this. On L_{R}, let us first consider the case that $|t|<5 / 2$. Then we see that

$$
|P(i t)-Q(i t)|=2|t|<5<\left|-i t^{7}+5\right|=|Q(i t)| .
$$

For $|t| \geq 5 / 2$, we have

$$
|P(i t)-Q(i t)|^{2}-|Q(i t)|^{2}=4 t^{2}-\left(t^{14}+25\right)=-t^{2}\left(t^{12}-4\right)-25<0
$$

It remains to show that P does not have a root on γ_{R}. Since it has only finitely many roots we can pick R big enough such that none of its roots are on C_{R}. There is also no root on L_{R}, since

$$
|P(i t)|^{2}=t^{2}\left(t^{6}+2\right)^{2}+25>0 .
$$

Thus we may apply Rouché's theorem to conclude that P has just as many roots inside γ_{R} as Q. Since Q has the roots $5^{1 / 7}, 5^{1 / 7} e^{2 \pi i / 7}, 5^{1 / 7} e^{-2 \pi i / 7}$ we conclude that P has three roots (counted with multiplicity) in the region with $\operatorname{Re}(z)>0$.

Alternative solution. We know that

$$
\frac{1}{2 \pi i} \int_{\gamma_{R}} \frac{P^{\prime}(z)}{P(z)} d z=\text { number of roots of } P \text { (counted with multiplicity). }
$$

By log we denote the logarithm with argument in $(0,2 \pi)$. We notice that

$$
\begin{aligned}
\int_{L_{R}} \frac{P^{\prime}(z)}{P(z)} d z & =[\log P(z)]_{i R}^{-i R}=\log \left(-5+i R\left(R^{6}+1\right)\right)-\log \left(-5-i R\left(R^{6}+1\right)\right) \\
& \rightarrow \frac{\pi i}{2}-\frac{3 \pi i}{2}=-\pi i \text { as } R \rightarrow \infty
\end{aligned}
$$

We notice that

$$
\int_{C_{R}} \frac{P^{\prime}(z)}{P(z)} d z=i \int_{-\pi / 2}^{\pi / 2} \frac{7 R^{7} e^{7 i t}-2 R e^{i t}}{R^{7} e^{7 i t}-2 R^{2} e^{2 i t}-5} d t \rightarrow i \int_{-\pi / 2}^{\pi / 2} 7 d t=7 \pi i
$$

as $R \rightarrow \infty$, and we are done.
b. (3 pt) How many of them are simple?

Suppose P has a root w (with $\operatorname{Re}(w)>0$) of multiplicity >1. Then we have $0=P^{\prime}(w)=7 w^{6}-2$, thus $w=\left(\frac{2}{7}\right)^{1 / 6} e^{2 \pi i k / 7}$ for some $k \in\{-1,0,1\}$. However, then we would have

$$
\left|w^{7}-2 w-5\right|=\left|\frac{-12}{7} w-5\right| \geq 5-\frac{12}{7}\left(\frac{2}{7}\right)^{1 / 6}>0
$$

We conclude that the three roots are simple.

Bonus Exercise (15 pt) Prove that

$$
\int_{0}^{\infty} \frac{\sin (x)}{\log ^{2}(x)+\frac{\pi^{2}}{4}} d x=\frac{2}{e}+\frac{2}{\pi} \int_{0}^{\infty} \frac{\log (x) \cos (x)}{\log ^{2}(x)+\frac{\pi^{2}}{4}} d x
$$

You may assume that the integrals converge.
Let us define the function $f: \mathbb{C} \backslash\{i y \mid y \leq 0\} \rightarrow \mathbb{C}$ by

$$
f(z)=\frac{e^{i z}}{\log (z)-\pi i / 2}
$$

where the argument is chosen in $(-\pi / 2,3 \pi / 2)$. Let us integrate f over the following contour.

For the integral over the little semicircle c_{ϵ} we have

$$
\lim _{\epsilon \downarrow 0}\left|\int_{c_{\epsilon}} f\right| \leq \lim _{\epsilon \downarrow 0} \int_{0}^{\pi} \frac{e^{-\epsilon \sin (t)}}{|\log (\epsilon)+i(t-\pi i / 2)|} \epsilon d t \leq \lim _{\epsilon \downarrow 0} \frac{\pi \epsilon}{-\log \epsilon}=0 .
$$

For the integral over the big semicircle C_{R} we will use the inequality $\sin (t) \geq \frac{\pi}{2} t$ for $0 \leq t \leq \frac{\pi}{2}$. We see

$$
\begin{aligned}
\left|\int_{C_{R}} f\right| & \leq \int_{0}^{\pi} \frac{e^{-R \sin (t)} R}{|\log (R)+i(t-\pi i / 2)|} d t=2 \int_{0}^{\frac{\pi}{2}} \frac{e^{-R \sin (t)} R}{|\log (R)+i(t-\pi i / 2)|} d t \\
& \leq 2 \int_{0}^{\frac{\pi}{2}} \frac{e^{-\frac{\pi}{2} R t} R}{\log R} d t=\frac{4}{\pi} \frac{1-e^{-R}}{\log R} \rightarrow 0 \text { as } R \rightarrow \infty
\end{aligned}
$$

By the residue theorem we get
$-\int_{0}^{\infty} \frac{e^{-i t}}{\log (t)+\pi i-\pi i / 2}(-1) d t+\int_{0}^{\infty} \frac{e^{i t}}{\log (t)-\pi i / 2} d t=2 \pi i \lim _{z \rightarrow i} \frac{z-i}{\log (z)-\log (i)} e^{i z}=-\frac{2 \pi}{e}$.
Working this out leads to the required equality.

