
Docent: Yu.A. Kuznetsov
Assistants: L. Molag, W. Pranger

SOLUTIONS ENDTERM COMPLEX FUNCTIONS

JUNE 26 2013, 9:00-12:00

Exercise 1 (10 pt) Give an analytic isomorphism between the first quad-
rant

Q = {z ∈ C : Re(z) > 0 and Im(z) > 0}

and the open unit disc D = {z ∈ C : |z| < 1}.

We will construct the required analytic isomorphisn as a composition of two maps, g :
Q → H and f : H → D where H denotes the upper halfplane.
Consider the function g : Q → H given by g(z) = z2. Writing z in polar form, one indeed
notices that g maps to H , since the argument is doubled by the mapping. We notice that

an analytic inverse of g can be given by z 7→
p

|z|e
1

2
i log z (leave out the ray of non-negative

real numbers). We conclude that g is an analytic isomorphism.
Let us look for a linear fractional transformation f : H → D. Such a transformation
can, for example, map {0, i,∞} onto {−1, 0, 1} (in this order). This defines f uniquely,
namely:

f(z) =
z − i

z + i
.

Let us prove that f indeed maps to D. Write z = x + iy, with y > 0. Indeed, we have

˛

˛

˛

˛

z − i

z + i

˛

˛

˛

˛

2

=
x2 + (y − 1)2

x2 + (y + 1)2
< 1.

We notice that for w ∈ D

f−1(w) = i
1 + w

1 − w

and can therefore conclude that f is an analytic isomorphism. Since the composition

of analytic isomorphisms is again an analytic isomorphism we conclude that f ◦ g is an

analytic isomorphism between Q and D.

Exercise 2 (25 pt) Let a, b > 0. Prove that the following integrals converge
and evaluate them.

a. (10 pt)

∫
∞

−∞

cos(ax) − cos(bx)

x2
dx
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Convergence of
R ∞

−∞

cos(ax)−cos(bx)

x2 dx means that

lim
A → −∞

B → ∞

R B

A

cos(ax)−cos(bx)

x2 dx exists. Since cos(ax)−cos(bx)

x2 is an even function:

lim
A → −∞

B → ∞

Z B

A

cos(ax) − cos(bx)

x2
dx = lim

A → ∞

B → ∞

h

Z A

0

cos(ax) − cos(bx)

x2
dx

+

Z B

0

cos(ax) − cos(bx)

x2
dx

i

= 2 lim
B→∞

Z B

0

cos(ax) − cos(bx)

x2
dx

= lim
B→∞

Z B

−B

cos(ax) − cos(bx)

x2
dx

We’ll show that the last limit exists. First, notice that cos(ax) − cos(bx) =

Re(eiax − ebxi) and therefore it suffices to compute limB→∞ Re(
R B

−B
eiax−ebxi

x2 dx).

With l’Hôpital, or the fact that cos(ax)− cos(bx) = x2(a2 − b2)/2 + O(x4), we can

see that cos(ax)−cos(bx)
x2 has no (non-removable) singularity on R, but eiax−ebxi

x2 does
have a simple pole in zero! For this reason, we use the contour depicted in the image.

−R −δ δ R

CR

Cδ
L2 L1

Of course, we take δ ↓ 0 and R → ∞. The lemma on page 196 of Lang implies

that limδ↓0

R

Cδ

eiax−ebxi

x2 dx = −πiResx=0(
eiax−ebxi

x2 ) = π(a − b), where the minus

sign comes from the fact that our path is clockwise orientated. (Cauchy’s theorem,
which is used in the prove of the lemma, works for counter-clockwise orientated).

Showing limR→∞

R

CR

eiax−ebxi

x2 dx = 0 is straight forward.
Notice that there are no poles inside our contour and therefore:

lim
R→∞,δ↓0

h

Z

Cδ

+

Z

L1

+

Z

CR

+

Z

L2

i

=

Z

R

+π(a − b) = 0

Clearly, our integral equals π(b − a).

Remark. For the convergence of the integral one can also use that (cos(ax) −

cos(bx))/x2 ≤ 2/x2 and thus it converges by the comparison test.
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b. (15 pt)

∫
∞

−∞

e−ax2
cos(bx) dx (Hint: Use a rectangular countour.)

Convergence follows in the same way as above when we remember
R

R
e−ax2

dx =
p

π
a
. As usual, we write cos(bx) = Re(eibx) such that we get

R

R
e−ax2+ibx. The

idea is to transform our integral to a gaussian integral as above and we will achieve
this with a translation of a complex number t: x 7→ x + t. We get

−ax2 + ibx 7→ −a(x + t)2 + ib(x + t) = −ax2 + (ib − 2at)x + (−at2 + ibt)

Notice that taking t = i b
2a

ensures that the linear term on the right vanishes,
it equals −ax2 + (−at2 + ibt). For this reason, let the contour be the rectan-
gle formed by [−R, R, R + i b

2a
,−R + i b

2a
], orientated counter-clockwise. Since

f(x) = e−ax2+ibx is an entire function, the integral will equal zero. It is easy

to prove that the vertical path’s will not contribute, i.e. limR→∞

R R+i b

2a

R f(x)dx =

limR→∞

R −R

−R+i b

2a

f(x)dx = 0. We end up with:

Z R

−R

e−ax2+ibxdx = −

Z −R+i b

2a

R+i b

2a

e−ax2+ibxdx =

Z R+i b

2a

−R+i b

2a

e−ax2+ibxdx

Notice that, because of the smart choice of t = i b
2a

, letting R → ∞, the last in-

tegral is simply
R ∞

−∞
e−ax2+(−at2+ibt)dx = e−at2+ibt

p

π
a
. Taking the real part, we

can conclude
R ∞

−∞
e−ax2

cos(bx)dx = eb2/(2a)
p

π
a
.

Remark. For the convergence of the integral one can also use that

|e−ax2

cos(bx)| ≤ e−ax2

and thus it converges by the comparison test.

Exercise 3 (10 pt) Consider the polynomial function P (z) = z7 − 2z − 5.

a. (7 pt) Determine the number of roots of P with Re(z) > 0.

We consider the contour γR given by (R > 0):

LR(t) = it with t ∈ [−R, R]

CR(t) = Reit with t ∈ [−π/2, π/2]

We define Q(z) = z7 − 5. In order to apply Rouché’s theorem we will prove that
|P (z) − Q(z)| < |Q(z)| on γR. On CR we can obviously pick R big enough to
achieve this. On LR, let us first consider the case that |t| < 5/2. Then we see that

|P (it) − Q(it)| = 2|t| < 5 < | − it7 + 5| = |Q(it)|.

For |t| ≥ 5/2, we have

|P (it) − Q(it)|2 − |Q(it)|2 = 4t2 − (t14 + 25) = −t2(t12 − 4) − 25 < 0.
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It remains to show that P does not have a root on γR. Since it has only finitely
many roots we can pick R big enough such that none of its roots are on CR. There
is also no root on LR, since

|P (it)|2 = t2(t6 + 2)2 + 25 > 0.

Thus we may apply Rouché’s theorem to conclude that P has just as many roots
inside γR as Q. Since Q has the roots 51/7, 51/7e2πi/7, 51/7e−2πi/7 we conclude that
P has three roots (counted with multiplicity) in the region with Re(z) > 0.

Alternative solution. We know that

1

2πi

Z

γR

P ′(z)

P (z)
dz = number of roots of P (counted with multiplicity).

By log we denote the logarithm with argument in (0, 2π). We notice that

Z

LR

P ′(z)

P (z)
dz = [log P (z)]−iR

iR = log(−5 + iR(R6 + 1)) − log(−5 − iR(R6 + 1))

→
πi

2
−

3πi

2
= −πi as R → ∞.

We notice that
Z

CR

P ′(z)

P (z)
dz = i

Z π/2

−π/2

7R7e7it − 2Reit

R7e7it − 2R2e2it − 5
dt → i

Z π/2

−π/2

7dt = 7πi

as R → ∞, and we are done.

b. (3 pt) How many of them are simple?

Suppose P has a root w (with Re(w) > 0) of multiplicity > 1. Then we have
0 = P ′(w) = 7w6 − 2, thus w = ( 2

7
)1/6e2πik/7 for some k ∈ {−1, 0, 1}. However,

then we would have

|w7 − 2w − 5| =

˛

˛

˛

˛

−12

7
w − 5

˛

˛

˛

˛

≥ 5 −
12

7

„

2

7

«1/6

> 0.

We conclude that the three roots are simple.

Bonus Exercise (15 pt) Prove that

∫
∞

0

sin(x)

log2(x) + π2

4

dx =
2

e
+

2

π

∫
∞

0

log(x) cos(x)

log2(x) + π2

4

dx .

You may assume that the integrals converge.

Let us define the function f : C \ {iy|y ≤ 0} → C by

f(z) =
eiz

log(z) − πi/2
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where the argument is chosen in (−π/2, 3π/2). Let us integrate f over the following con-
tour.

−R −ǫ R

CR

cǫ

ǫ

For the integral over the little semicircle cǫ we have

lim
ǫ↓0

˛

˛

˛

˛

Z

cǫ

f

˛

˛

˛

˛

≤ lim
ǫ↓0

Z π

0

e−ǫ sin(t)

| log(ǫ) + i(t − πi/2)|
ǫdt ≤ lim

ǫ↓0

πǫ

− log ǫ
= 0.

For the integral over the big semicircle CR we will use the inequality sin(t) ≥ π
2
t for

0 ≤ t ≤ π
2
. We see

˛

˛

˛

˛

Z

CR

f

˛

˛

˛

˛

≤

Z π

0

e−R sin(t)R

| log(R) + i(t − πi/2)|
dt = 2

Z π

2

0

e−R sin(t)R

| log(R) + i(t − πi/2)|
dt

≤ 2

Z π

2

0

e−
π

2
RtR

log R
dt =

4

π

1 − e−R

log R
→ 0 as R → ∞.

By the residue theorem we get

−

Z ∞

0

e−it

log(t) + πi − πi/2
(−1)dt +

Z ∞

0

eit

log(t) − πi/2
dt = 2πi lim

z→i

z − i

log(z) − log(i)
eiz = −

2π

e
.

Working this out leads to the required equality.
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