Speltheorie (hertentamen) (WISB272) 21 augustus 2003

Schrijf je naam en registratienummer op vel no. 1 en schrijf je naam ook bovenaan elk ander in te leveren vel.

Question 1

Consider a version of Nim played exactly as Nim except that in each move a player may take away any number of stones from one or two heaps. There are n heaps and at least one stone must be taken in a move. Each position $\left(k_{1}, \ldots, k_{n}\right)$ can be represented as a rectangular matrix with elements 0 and 1 in n rows, such that row j is the expansion of k_{j} in base 2 , perhaps complemented by some zeroes on the left.
a) Prove that a position is a P-position if and only if the number of 1's in each column of the matrix is divisible by 3 .
b) Use the result in (a) to decide if $(12,19,27)$ is a N-position and if 'yes' find the first winning move.

Question 2

A game on a 4×4 chessboard with two rooks is played by two players. The rooks may occupy the same or different squares. As the game starts, both rooks are on the square $(1,1)$, and in each move a player may select one of the rooks to move. If the player decides to move a rook in square (x, y) she must move it to either a square $\left(x^{\prime}, y\right)$ with $x^{\prime}>x$ or a square $\left(x, y^{\prime}\right)$ with $y^{\prime}>y$. The players alternate the moves and the last player to move wins.
a) Decide if the initial position is a P-position.
b) Determine the Sprague-Grundy function of the game.

Question 3

Solve the game with matrix

$$
\left(\begin{array}{llll}
2 & 5 & 1 & 7 \\
4 & 3 & 6 & 2
\end{array}\right)
$$

Question 4

Find all Nash equilibria in the following games:
а) $\left(\begin{array}{cc}0,0 & -2,1 \\ 1,-2 & -3,-3\end{array}\right)$
b) $\left(\begin{array}{ll}1,1 & 3,3 \\ 4,0 & 0,4\end{array}\right)$
c) $\left(\begin{array}{lll}0,0 & 0,0 & 2,2 \\ 0,0 & 3,3 & 0,0 \\ 1,1 & 0,0 & 0,0\end{array}\right)$.

Question 5

Consider the cooperative game with bimatrix $\left(\begin{array}{ccc}1,2 & 4,3 & 6,2 \\ 4,0 & 3,3 & 2,2\end{array}\right)$.
a) Assuming nontransferable utility, sketch the feasible set and determine its Pareto boundary.
b) Assuming a transferable utility find the TU-solution, including threat strategies, disagreement point and side payment.

Question 6

Consider the three-person game in coalitional form with the characteristic function $v(\emptyset)=0, v(\{1\})=$ $0, v(\{2\})=1, v(\{3\})=-1, v(\{1,2\})=2, v(\{1,3\})=0, v(\{2,3\})=1, v(\{1,2,3\})=3$.
a) Decide if the core is empty and if 'no' find a stable imputation.
b) Compute the Shapley value.

Question 7

Consider the Cournot duopoly model with price per item equal to $(29-s)_{+}+1$ where s is the total amount produced. Producer's i cost of producing $x \geq 0$ items is $x+i$.
a) Suppose there are two producers. What is their equilibrium production and the total profit?
b) Suppose there are n producers. Find all possible values of n such that the equilibrium production is profitable for each of the producers.

