Inleiding Topologie retake, August 24, 2011

Exercise 1 Show that the equation

$$x^5 + 7x^2 - 30x + 1 = 0$$

has at least two solutions $x_0, x_1 \in (0, 2)$. (1 p)

Exercise 2 Consider the space $\mathcal{C}([0,1])$ of all continuous maps $f:[0,1] \longrightarrow \mathbb{R}$, endowed with the sup-metric. Show that

$$A := \{ f \in \mathcal{C}([0,1]) : x^2 \le e^{f(x)} + \sin(f(x)) \le x \ \forall x \in [0,1] \}$$

is a closed and bounded subset of $\mathcal{C}([0,1])$. (1 p)

Exercise 3 Describe a subspace $X \subset \mathbb{R}^2$ which is connected, whose closure (in \mathbb{R}^2) is compact, but with the property that X is not locally compact. (1 p)

Exercise 4 Let $G = (0, \infty)$ be the group of strictly positive reals, endowed with the usual product. Find an action of G on \mathbb{R}^4 with the property that \mathbb{R}^4/G is homeomorphic to S^3 . (1 p)

Exercise 5 Let $X = \mathbb{R}^2$ endowed with the product topology $\mathcal{T}_l \times \mathcal{T}_l$, where \mathcal{T}_l is the lower limit topology on \mathbb{R} .

- a. Describe a countable topology basis for the topological space X. (0.5 p)
- b. Find a sequence $(x_n)_{n\geq 1}$ of points in \mathbb{R}^2 which converges to (0,0) with respect to the Euclidean topology, but which has no convergent subsequence in the topological space X. (0.5 p)
- c. Compute the interior, the closure and the boundary (in X) of

$$A = [0, 1) \times (0, 1]. \quad (1p)$$

(please use pictures!).

Exercise 6 Decide (and explain) which of the following statements hold true:

- a. $S^1 \times S^1 \times S^1$ can be embedded in \mathbb{R}^4 . (0.5 p)
- b. S^1 can be embedded in $(0, \infty)$. (0.5 p)
- c. the cylinder $S^1 \times [0,1]$ can be embedded in the Klein bottle. (0.5 p)
- d. The Moebius band can be embedded into the projective space \mathbb{P}^2 . (0.5 p)
- e. the projective space \mathbb{P}^3 can be embedded in \mathbb{R}^6 . (0.5 p)

Exercise 7 Given a polynomial $p \in \mathbb{R}[X_0, X_1, \ldots, X_n]$, we denote by \mathcal{R}_p the set of reminders modulo p. In other words,

$$\mathcal{R}_p = \mathbb{R}[X_0, X_1, \dots, X_n]/R_p$$

where R_p is the equivalence relation on $\mathbb{R}[X_0, X_1, \dots, X_n]$ given by

$$R_p = \{(q_1, q_2): \exists q \in \mathbb{R}[X_0, X_1, \dots, X_n] \text{ such that } q_1 - q_2 = pq\}.$$

For $q \in \mathbb{R}[X_0, X_1, \dots, X_n]$, we denoted by $[q] \in \mathcal{R}_p$ the induced equivalence class. Show that:

a. The operations (on \mathcal{R}_p) +, \cdot and multiplications by scalars given by

$$[q_1] + [q_2] := [q_1 + q_2], \ [q_1] \cdot [q_2] := [q_1 \cdot q_2], \ \lambda[q] := [\lambda q]$$

are well-defined and make \mathcal{R}_p into an algebra. (0.5 p)

- b. For $p = x_0^2 + \ldots + x_n^2$, the spectrum of \mathcal{R}_p has only one point. (0.5 p)
- c. For $p = x_0^2 + \ldots + x_n^2 1$, the spectrum of \mathcal{R}_p is homeomorphic to S^n (1 p).

Note: please motivate all your answers (e.g., in Exercise 6, explain/prove in each case your answer. Or, in Exercise 4 prove that \mathbb{R}^4/G is homeomorphic to S^3).