Inleiding Topologie
 retake, August 24, 2011

Exercise 1 Show that the equation

$$
x^{5}+7 x^{2}-30 x+1=0
$$

has at least two solutions $x_{0}, x_{1} \in(0,2)$. ($1 p$)
Exercise 2 Consider the space $\mathcal{C}([0,1])$ of all continuous maps $f:[0,1] \longrightarrow \mathbb{R}$, endowed with the sup-metric. Show that

$$
A:=\left\{f \in \mathcal{C}([0,1]): x^{2} \leq e^{f(x)}+\sin (f(x)) \leq x \quad \forall x \in[0,1]\right\}
$$

is a closed and bounded subset of $\mathcal{C}([0,1])$. (1 p)
Exercise 3 Describe a subspace $X \subset \mathbb{R}^{2}$ which is connected, whose closure (in \mathbb{R}^{2}) is compact, but with the property that X is not locally compact. (1 p)

Exercise 4 Let $G=(0, \infty)$ be the group of strictly positive reals, endowed with the usual product. Find an action of G on \mathbb{R}^{4} with the property that \mathbb{R}^{4} / G is homeomorphic to S^{3}. (1p)

Exercise 5 Let $X=\mathbb{R}^{2}$ endowed with the product topology $\mathcal{T}_{l} \times \mathcal{T}_{l}$, where \mathcal{T}_{l} is the lower limit topology on \mathbb{R}.
a. Describe a countable topology basis for the topological space X. ($0.5 p$)
b. Find a sequence $\left(x_{n}\right)_{n \geq 1}$ of points in \mathbb{R}^{2} which converges to $(0,0)$ with respect to the Euclidean topology, but which has no convergent subsequence in the topological space X. ($0.5 p$)
c. Compute the interior, the closure and the boundary (in X) of

$$
A=[0,1) \times(0,1] . \quad(1 p)
$$

(please use pictures!).
Exercise 6 Decide (and explain) which of the following statements hold true:
a. $S^{1} \times S^{1} \times S^{1}$ can be embedded in \mathbb{R}^{4}. ($\left.0.5 p\right)$
b. S^{1} can be embedded in $(0, \infty)$. ($0.5 p$)
c. the cylinder $S^{1} \times[0,1]$ can be embedded in the Klein bottle. $(0.5 p)$
d. The Moebius band can be embedded into the projective space \mathbb{P}^{2}. (0.5 p)
e. the projective space \mathbb{P}^{3} can be embedded in \mathbb{R}^{6}. (0.5 p)

Exercise 7 Given a polynomial $p \in \mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$, we denote by \mathcal{R}_{p} the set of reminders modulo p. In other words,

$$
\mathcal{R}_{p}=\mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right] / R_{p},
$$

where R_{p} is the equivalence relation on $\mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ given by

$$
R_{p}=\left\{\left(q_{1}, q_{2}\right): \exists q \in \mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right] \text { such that } q_{1}-q_{2}=p q\right\} .
$$

For $q \in \mathbb{R}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$, we denoted by $[q] \in \mathcal{R}_{p}$ the induced equivalence class. Show that:
a. The operations (on \mathcal{R}_{p}) + , and multiplications by scalars given by

$$
\left[q_{1}\right]+\left[q_{2}\right]:=\left[q_{1}+q_{2}\right],\left[q_{1}\right] \cdot\left[q_{2}\right]:=\left[q_{1} \cdot q_{2}\right], \lambda[q]:=[\lambda q]
$$

are well-defined and make \mathcal{R}_{p} into an algebra. ($0.5 p$)
b. For $p=x_{0}^{2}+\ldots+x_{n}^{2}$, the spectrum of \mathcal{R}_{p} has only one point. ($0.5 p$)
c. For $p=x_{0}^{2}+\ldots+x_{n}^{2}-1$, the spectrum of \mathcal{R}_{p} is homeomorphic to $S^{n}(1 p)$.

Note: please motivate all your answers (e.g., in Exercise 6, explain/prove in each case your answer. Or, in Exercise 4 prove that \mathbb{R}^{4} / G is homeomorphic to $\left.S^{3}\right)$.

