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Exam group theory - Solutions
January 2, 2017

Een Nederlandse versie vind je hiervoor. Clearly write your name and student number above
each page you hand in. A calculator, telephone, books, notes or old exercises are not allowed.
To answer your questions you may use the results (not the exercises) in the book ‘Groups and
Symmetry’ by Armstrong, unless a result is explicitly asked for. Further: a group G is called
simple if the only normal subgroups of G are given by {e} with e ∈ G the identity element,
and G itself. You may use that An, n ≥ 5 is a simple group (this is mostly useful for the bonus
exercise).

Start every main exercise on a new sheet.

Total number of points: 90. Bonus points: 4.

Exercise 1: Permutation groups and dihedral groups

1. (4pt) Give all elements of D10 of order 2. Answer: srk, r5 with 0 ≤ k ≤ 9.

2. (4pt) Consider D7 and let H < K < D7 be subgroups such that H 6= K and K 6= D7.
Show that H is the trivial group, meaning that H contains only 1 element. Answer: As
K < D7,K 6= D7 implies by Lagrange that |K| is either 7 or 2. In both cases H < K,H 6=
K implies by Lagrange that |K| = 1.

3. (4pt) Let σ1 = (1 2 3 4) and σ2 = (5 6 7 8) be elements of S8. Give an element τ ∈ S8 such
that σ1 = τσ2τ

−1. Answer: For example τ = (1 5)(2 6)(3 7)(4 8) works. There are many
other possibilities too.

4. (4pt) Let σ = (1 2 3 . . . 50) be an element of S50. Write σ49 as a product of disjoint cykels.
Answer: σ49 is the inverse of σ so it is (50 49 48 . . . 1).

Exercise 2: True or false?

Prove or give a counterexample.

1. (6pt) Let G be an abelian group. Let x, y ∈ G be elements of finite order. Then xy has
finite order. Answer: True. Suppose xn = e, xm = e. Then (using that G is abelian) we
get that (xy)nm = xnmynm = ee = e. So the order of xy is at most nm. Remark: it need
not be equal to nm.

2. (6pt) The group Z6 × Z15 is cyclic. Answer: False. This is just Theorem 10.1.

3. (6pt) There exists a normal subgroup H of D37 such that D37/H is isomorphic to Z2.
Answer: True. Take H =< r > (or use Cauchy to assert the existence of a group H with
37 elements). As |D37| = 2 · 37 we see that H is an index 2 subgroup. Hence it is normal
(Armstrong) and the quotient group has only 2 elements, hence we have D37/H ' Z2.

4. (6pt) There exists a normal subgroup H of S7 such that S7/H is isomorphic to Z11. Ans-
wer: False. If this were to be true then |Z11| = |S7|/|H| but 11 is not a divisor of 7!.
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5. (6pt) Let G be a finite group that acts on a set X. For g ∈ G let Xg = {x ∈ X | g(x) = x}.
Then |Xg| divides |G|. Answer: False. Exercise 3 gives many counter examples.

6. (6pt) Consider the action of GLn on X := GLn by conjugation. Thus g(x) = gxg−1, g ∈
GLn, x ∈ X. This action has infinitely many orbits. Hint: Use the determinant in a
suitable way. Answer: We have det(g−1xg) = det(x) so elements in the same orbit have
the same determinant. As there are infinitely many possibilities for the determinant, we
have infinitely many orbits.

7. (6pt) There exists a simple group of order 7 · 11 · 137. Answer: False. By the first Sylow
theorem there exists a subgroup of order 137, say H. The number such subgroups is a
divisor of 7 · 11 which is 1 mod 137. So there is only one such H. As for every g ∈ G the
set gHg−1 is actually a subgroup of G of order 137 we see that we must have gHg−1 = H.
So H is normal. Therefore G is not simple.

Exercise 3: The counting theorem

(16pt) Consider the plate with basis a regular hexagon. You want to put an arrow on each
of the 6 faces on the side of the plate. The arrow has to be put in the middle and points
either upwards or downwards (i.e. in the direction of the top or bottom of the plate). Use the
counting theorem to determine the number of possibilities. Two arrow configurations are the
same if one can be obtained from the other by rotating the plate. You may use the following
figure from Armstrong’s book. You may also use that the conjugation classes of D6 =< s, r >
with s2 = e, r6 = e, srs = r−1 are given by {e}, {r, r5, }, {r2, r4}, {r3}, {s, sr2, sr4}, {sr, sr3, sr5}.
Explicitly formulate the counting theorem in your answer and show how it is applied. Motivate
the numbers that occur in your calculation. Answer: The counting theorem says that the
number of orbits (= number of possible arrow combinations) equals 1/|G|

∑
g∈G |Xg|. We get

1
12 (26 · 1 + 2 · 2 + 22 · 2 + 23 · 1 + 0 · 3 + 23 · 3) = 9. Remark: the exercise asks to state the counting
theorem. If you only give the sum 1/|G|

∑
g∈G |Xg| but do not tell what this sum represents

(either orbits, or arrow combinations) then 2 points were substracted.
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Exercise 4: Distinguishing groups

(8pt) The groups D2 × D3 × . . . × D7 and S7 × (Z2)6 both have 26 · (7!) elements. Show that
these groups are however not isomorphic. Here we mean by definition (Z2)6 = Z2 × Z2 ×
Z2 × Z2 × Z2 × Z2. Answeer: There are many possibilities, and here are a couple. Let
G = D2 × D3 × . . . × D7 and H = S7 × (Z2)6. Answer 1: The number of elements of
order 7 in G is 6, the number of elements of order 7 in H is 6!. Answer 2: The number
of elements of order 5 in G is 4 and the number of elements of order 5 in G is much more
(write down a couple, it is not hard; the precise number is

(
7
2

)
4!). Answer 3: Whenever

you take an element x ∈ G of order 5 and an element y ∈ G of order 7 we have that x
and y commute. This is not true in H as a 5-cykel and a 7-cykel in fact never commute.
Answer 4: The commutator subgroup of G is isomorphic to {e}×Z3×Z2×Z5×Z3×Z7

which is abelian. The commutator subgroup of H is A7 × {e} which is not abelian.

Exercise 5: Counting homomorphisms

Let n ≥ 5 and k ≥ 3. Assume that k is not divisible by 3.

1. (4pt) Let ϕ : Sn → Dk be a homomorphism. Prove that An is contained in the kernel
of ϕ. Hint: What can be said about the image under ϕ of a 3-cykel in Sn? Answer:
Dk does not contain any elements of order 3. As for a 3-cykel σ ∈ Sn we must have
ϕ(σ)3 = ϕ(σ3) = ϕ(e) = e we see that the only possibility for the image of σ under ϕ is
the identity of Dk. So all 3-cykels are in the kernel of ϕ. As the 3-cykels generate An (see
Armstrong) we get that An < ker(ϕ).

2. (4pt) How many homomorphisms Sn → Dk are there? Remark: The answer depends on k,
but is independent of n. Answer: By the previous exercise the image of a homomorphism
is completely determined by the image of the 2-cykel (12), because then indeed all elements
in An must map to the identity and all elements of (1 2)An must have the same image as
(1 2). The image of (1 2) must either be the identity or an element of order 2, call this
element x. There are k + 1 choices for such x in Dk in case k is odd, and k + 2 such
elements in case k is even (this is more or less exercise 1.1). We need to show that mapping
(1 2)An to x and An to e is a homomorphism. But this is easy, because this mapping is
the composition of the quotient map Sn → Sn/An ' Z2 and the homomorphism Z2 → Dk

that sends 1 to x.

3. (Bonus: 4pt) Now let n ≥ 5 and k ≥ 3 be arbitrary, so k may be divisible by 3. How many
homomorphisms Sn → Dk are there? Answer: We first show that 5.1 still holds, also if
k is divisible by 3. Restrict ϕ to a map An → Dk. As An is simple and the kernel of (the
restriction of) ϕ is a normal subgroup of An we see that either ker(ϕ) = e or ker(ϕ) = An.
If ker(ϕ) = e then ϕ is injective and so An would be a normal subgroup of Dk. However,
in Dk any 2 elements of order 3 would commute (as they are in < r >) and in An this is
not true. So we conclude that this is nonsense and we must have that ker(ϕ) = An. So we
showed that exercsise 5.1 still holds. Then one can copy the answer of 5.2 verbatim to the
case of exercise 5.3 to conclude.


